3.3.33 \(\int \frac {1+x^2}{(1-7 x^2+7 x^4-x^6)^2} \, dx\) [233]

3.3.33.1 Optimal result
3.3.33.2 Mathematica [A] (verified)
3.3.33.3 Rubi [B] (verified)
3.3.33.4 Maple [A] (verified)
3.3.33.5 Fricas [B] (verification not implemented)
3.3.33.6 Sympy [B] (verification not implemented)
3.3.33.7 Maxima [A] (verification not implemented)
3.3.33.8 Giac [A] (verification not implemented)
3.3.33.9 Mupad [B] (verification not implemented)

3.3.33.1 Optimal result

Integrand size = 25, antiderivative size = 91 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=\frac {x}{16 \left (1-x^2\right )}+\frac {x \left (29-5 x^2\right )}{32 \left (1-6 x^2+x^4\right )}+\frac {\text {arctanh}(x)}{4}+\frac {1}{64} \left (\left (3-2 \sqrt {2}\right ) \text {arctanh}\left (\left (-1+\sqrt {2}\right ) x\right )-\left (3+2 \sqrt {2}\right ) \text {arctanh}\left (\left (1+\sqrt {2}\right ) x\right )\right ) \]

output
1/16*x/(-x^2+1)+1/32*x*(-5*x^2+29)/(x^4-6*x^2+1)+1/4*arctanh(x)+1/64*arcta 
nh(x*(2^(1/2)-1))*(3-2*2^(1/2))-1/64*arctanh(x*(1+2^(1/2)))*(3+2*2^(1/2))
 
3.3.33.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.45 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=\frac {1}{128} \left (-\frac {4 x \left (31-46 x^2+7 x^4\right )}{-1+7 x^2-7 x^4+x^6}-16 \log (1-x)+\left (3+2 \sqrt {2}\right ) \log \left (-1+\sqrt {2}-x\right )+\left (-3+2 \sqrt {2}\right ) \log \left (1+\sqrt {2}-x\right )+16 \log (1+x)-\left (3+2 \sqrt {2}\right ) \log \left (-1+\sqrt {2}+x\right )+\left (3-2 \sqrt {2}\right ) \log \left (1+\sqrt {2}+x\right )\right ) \]

input
Integrate[(1 + x^2)/(1 - 7*x^2 + 7*x^4 - x^6)^2,x]
 
output
((-4*x*(31 - 46*x^2 + 7*x^4))/(-1 + 7*x^2 - 7*x^4 + x^6) - 16*Log[1 - x] + 
 (3 + 2*Sqrt[2])*Log[-1 + Sqrt[2] - x] + (-3 + 2*Sqrt[2])*Log[1 + Sqrt[2] 
- x] + 16*Log[1 + x] - (3 + 2*Sqrt[2])*Log[-1 + Sqrt[2] + x] + (3 - 2*Sqrt 
[2])*Log[1 + Sqrt[2] + x])/128
 
3.3.33.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(245\) vs. \(2(91)=182\).

Time = 0.46 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.69, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2460, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2+1}{\left (-x^6+7 x^4-7 x^2+1\right )^2} \, dx\)

\(\Big \downarrow \) 2460

\(\displaystyle \int \left (\frac {17-7 x}{32 \left (x^2-2 x-1\right )^2}-\frac {1}{4 \left (x^2-1\right )}-\frac {3 (x-4)}{64 \left (x^2-2 x-1\right )}+\frac {3 (x+4)}{64 \left (x^2+2 x-1\right )}+\frac {7 x+17}{32 \left (x^2+2 x-1\right )^2}+\frac {1}{32 (x-1)^2}+\frac {1}{32 (x+1)^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\text {arctanh}(x)}{4}-\frac {12-5 x}{64 \left (-x^2+2 x+1\right )}+\frac {5 x+12}{64 \left (-x^2-2 x+1\right )}+\frac {1}{32 (1-x)}-\frac {1}{32 (x+1)}-\frac {3}{256} \left (2+3 \sqrt {2}\right ) \log \left (-x-\sqrt {2}+1\right )+\frac {5 \log \left (-x-\sqrt {2}+1\right )}{128 \sqrt {2}}-\frac {3}{256} \left (2-3 \sqrt {2}\right ) \log \left (-x+\sqrt {2}+1\right )-\frac {5 \log \left (-x+\sqrt {2}+1\right )}{128 \sqrt {2}}+\frac {3}{256} \left (2+3 \sqrt {2}\right ) \log \left (x-\sqrt {2}+1\right )-\frac {5 \log \left (x-\sqrt {2}+1\right )}{128 \sqrt {2}}+\frac {3}{256} \left (2-3 \sqrt {2}\right ) \log \left (x+\sqrt {2}+1\right )+\frac {5 \log \left (x+\sqrt {2}+1\right )}{128 \sqrt {2}}\)

input
Int[(1 + x^2)/(1 - 7*x^2 + 7*x^4 - x^6)^2,x]
 
output
1/(32*(1 - x)) - 1/(32*(1 + x)) + (12 + 5*x)/(64*(1 - 2*x - x^2)) - (12 - 
5*x)/(64*(1 + 2*x - x^2)) + ArcTanh[x]/4 + (5*Log[1 - Sqrt[2] - x])/(128*S 
qrt[2]) - (3*(2 + 3*Sqrt[2])*Log[1 - Sqrt[2] - x])/256 - (5*Log[1 + Sqrt[2 
] - x])/(128*Sqrt[2]) - (3*(2 - 3*Sqrt[2])*Log[1 + Sqrt[2] - x])/256 - (5* 
Log[1 - Sqrt[2] + x])/(128*Sqrt[2]) + (3*(2 + 3*Sqrt[2])*Log[1 - Sqrt[2] + 
 x])/256 + (5*Log[1 + Sqrt[2] + x])/(128*Sqrt[2]) + (3*(2 - 3*Sqrt[2])*Log 
[1 + Sqrt[2] + x])/256
 

3.3.33.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2460
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, 
Int[ExpandIntegrand[u*(Qx /. x -> x^2)^p, x], x] /;  !SumQ[NonfreeFactors[Q 
x, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] &&  !BinomialQ[Px, x] && 
 !TrinomialQ[Px, x] && ILtQ[p, 0] && RationalFunctionQ[u, x]
 
3.3.33.4 Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.27

method result size
default \(-\frac {1}{32 \left (x +1\right )}+\frac {\ln \left (x +1\right )}{8}+\frac {-5 x -12}{64 x^{2}+128 x -64}+\frac {3 \ln \left (x^{2}+2 x -1\right )}{128}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x +2\right ) \sqrt {2}}{4}\right )}{32}-\frac {1}{32 \left (x -1\right )}-\frac {\ln \left (x -1\right )}{8}-\frac {5 x -12}{64 \left (x^{2}-2 x -1\right )}-\frac {3 \ln \left (x^{2}-2 x -1\right )}{128}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x -2\right ) \sqrt {2}}{4}\right )}{32}\) \(116\)
risch \(\frac {-\frac {7}{32} x^{5}+\frac {23}{16} x^{3}-\frac {31}{32} x}{x^{6}-7 x^{4}+7 x^{2}-1}-\frac {3 \ln \left (x -1-\sqrt {2}\right )}{128}+\frac {\ln \left (x -1-\sqrt {2}\right ) \sqrt {2}}{64}-\frac {3 \ln \left (x -1+\sqrt {2}\right )}{128}-\frac {\ln \left (x -1+\sqrt {2}\right ) \sqrt {2}}{64}+\frac {\ln \left (x +1\right )}{8}-\frac {\ln \left (x -1\right )}{8}+\frac {3 \ln \left (2 x +2-2 \sqrt {2}\right )}{128}+\frac {\ln \left (2 x +2-2 \sqrt {2}\right ) \sqrt {2}}{64}+\frac {3 \ln \left (2 x +2+2 \sqrt {2}\right )}{128}-\frac {\ln \left (2 x +2+2 \sqrt {2}\right ) \sqrt {2}}{64}\) \(150\)

input
int((x^2+1)/(-x^6+7*x^4-7*x^2+1)^2,x,method=_RETURNVERBOSE)
 
output
-1/32/(x+1)+1/8*ln(x+1)+1/64*(-5*x-12)/(x^2+2*x-1)+3/128*ln(x^2+2*x-1)-1/3 
2*2^(1/2)*arctanh(1/4*(2*x+2)*2^(1/2))-1/32/(x-1)-1/8*ln(x-1)-1/64*(5*x-12 
)/(x^2-2*x-1)-3/128*ln(x^2-2*x-1)-1/32*2^(1/2)*arctanh(1/4*(2*x-2)*2^(1/2) 
)
 
3.3.33.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (71) = 142\).

Time = 0.34 (sec) , antiderivative size = 223, normalized size of antiderivative = 2.45 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=-\frac {28 \, x^{5} - 184 \, x^{3} - 2 \, \sqrt {2} {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (\frac {x^{2} - 2 \, \sqrt {2} {\left (x + 1\right )} + 2 \, x + 3}{x^{2} + 2 \, x - 1}\right ) - 2 \, \sqrt {2} {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (\frac {x^{2} - 2 \, \sqrt {2} {\left (x - 1\right )} - 2 \, x + 3}{x^{2} - 2 \, x - 1}\right ) - 3 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x^{2} + 2 \, x - 1\right ) + 3 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x^{2} - 2 \, x - 1\right ) - 16 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x + 1\right ) + 16 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x - 1\right ) + 124 \, x}{128 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )}} \]

input
integrate((x^2+1)/(-x^6+7*x^4-7*x^2+1)^2,x, algorithm="fricas")
 
output
-1/128*(28*x^5 - 184*x^3 - 2*sqrt(2)*(x^6 - 7*x^4 + 7*x^2 - 1)*log((x^2 - 
2*sqrt(2)*(x + 1) + 2*x + 3)/(x^2 + 2*x - 1)) - 2*sqrt(2)*(x^6 - 7*x^4 + 7 
*x^2 - 1)*log((x^2 - 2*sqrt(2)*(x - 1) - 2*x + 3)/(x^2 - 2*x - 1)) - 3*(x^ 
6 - 7*x^4 + 7*x^2 - 1)*log(x^2 + 2*x - 1) + 3*(x^6 - 7*x^4 + 7*x^2 - 1)*lo 
g(x^2 - 2*x - 1) - 16*(x^6 - 7*x^4 + 7*x^2 - 1)*log(x + 1) + 16*(x^6 - 7*x 
^4 + 7*x^2 - 1)*log(x - 1) + 124*x)/(x^6 - 7*x^4 + 7*x^2 - 1)
 
3.3.33.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 272 vs. \(2 (73) = 146\).

Time = 0.80 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.99 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=\frac {- 7 x^{5} + 46 x^{3} - 31 x}{32 x^{6} - 224 x^{4} + 224 x^{2} - 32} - \frac {\log {\left (x - 1 \right )}}{8} + \frac {\log {\left (x + 1 \right )}}{8} + \left (- \frac {3}{128} - \frac {\sqrt {2}}{64}\right ) \log {\left (x - \frac {38423555}{909328} - \frac {38423555 \sqrt {2}}{1363992} + \frac {9549859782656 \left (- \frac {3}{128} - \frac {\sqrt {2}}{64}\right )^{5}}{170499} - \frac {56267374592 \left (- \frac {3}{128} - \frac {\sqrt {2}}{64}\right )^{3}}{56833} \right )} + \left (- \frac {3}{128} + \frac {\sqrt {2}}{64}\right ) \log {\left (x - \frac {38423555}{909328} + \frac {9549859782656 \left (- \frac {3}{128} + \frac {\sqrt {2}}{64}\right )^{5}}{170499} - \frac {56267374592 \left (- \frac {3}{128} + \frac {\sqrt {2}}{64}\right )^{3}}{56833} + \frac {38423555 \sqrt {2}}{1363992} \right )} + \left (\frac {3}{128} - \frac {\sqrt {2}}{64}\right ) \log {\left (x - \frac {38423555 \sqrt {2}}{1363992} - \frac {56267374592 \left (\frac {3}{128} - \frac {\sqrt {2}}{64}\right )^{3}}{56833} + \frac {9549859782656 \left (\frac {3}{128} - \frac {\sqrt {2}}{64}\right )^{5}}{170499} + \frac {38423555}{909328} \right )} + \left (\frac {\sqrt {2}}{64} + \frac {3}{128}\right ) \log {\left (x - \frac {56267374592 \left (\frac {\sqrt {2}}{64} + \frac {3}{128}\right )^{3}}{56833} + \frac {9549859782656 \left (\frac {\sqrt {2}}{64} + \frac {3}{128}\right )^{5}}{170499} + \frac {38423555 \sqrt {2}}{1363992} + \frac {38423555}{909328} \right )} \]

input
integrate((x**2+1)/(-x**6+7*x**4-7*x**2+1)**2,x)
 
output
(-7*x**5 + 46*x**3 - 31*x)/(32*x**6 - 224*x**4 + 224*x**2 - 32) - log(x - 
1)/8 + log(x + 1)/8 + (-3/128 - sqrt(2)/64)*log(x - 38423555/909328 - 3842 
3555*sqrt(2)/1363992 + 9549859782656*(-3/128 - sqrt(2)/64)**5/170499 - 562 
67374592*(-3/128 - sqrt(2)/64)**3/56833) + (-3/128 + sqrt(2)/64)*log(x - 3 
8423555/909328 + 9549859782656*(-3/128 + sqrt(2)/64)**5/170499 - 562673745 
92*(-3/128 + sqrt(2)/64)**3/56833 + 38423555*sqrt(2)/1363992) + (3/128 - s 
qrt(2)/64)*log(x - 38423555*sqrt(2)/1363992 - 56267374592*(3/128 - sqrt(2) 
/64)**3/56833 + 9549859782656*(3/128 - sqrt(2)/64)**5/170499 + 38423555/90 
9328) + (sqrt(2)/64 + 3/128)*log(x - 56267374592*(sqrt(2)/64 + 3/128)**3/5 
6833 + 9549859782656*(sqrt(2)/64 + 3/128)**5/170499 + 38423555*sqrt(2)/136 
3992 + 38423555/909328)
 
3.3.33.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.25 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=\frac {1}{64} \, \sqrt {2} \log \left (\frac {x - \sqrt {2} + 1}{x + \sqrt {2} + 1}\right ) + \frac {1}{64} \, \sqrt {2} \log \left (\frac {x - \sqrt {2} - 1}{x + \sqrt {2} - 1}\right ) - \frac {7 \, x^{5} - 46 \, x^{3} + 31 \, x}{32 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )}} + \frac {3}{128} \, \log \left (x^{2} + 2 \, x - 1\right ) - \frac {3}{128} \, \log \left (x^{2} - 2 \, x - 1\right ) + \frac {1}{8} \, \log \left (x + 1\right ) - \frac {1}{8} \, \log \left (x - 1\right ) \]

input
integrate((x^2+1)/(-x^6+7*x^4-7*x^2+1)^2,x, algorithm="maxima")
 
output
1/64*sqrt(2)*log((x - sqrt(2) + 1)/(x + sqrt(2) + 1)) + 1/64*sqrt(2)*log(( 
x - sqrt(2) - 1)/(x + sqrt(2) - 1)) - 1/32*(7*x^5 - 46*x^3 + 31*x)/(x^6 - 
7*x^4 + 7*x^2 - 1) + 3/128*log(x^2 + 2*x - 1) - 3/128*log(x^2 - 2*x - 1) + 
 1/8*log(x + 1) - 1/8*log(x - 1)
 
3.3.33.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.47 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=\frac {1}{64} \, \sqrt {2} \log \left (\frac {{\left | 2 \, x - 2 \, \sqrt {2} + 2 \right |}}{{\left | 2 \, x + 2 \, \sqrt {2} + 2 \right |}}\right ) + \frac {1}{64} \, \sqrt {2} \log \left (\frac {{\left | 2 \, x - 2 \, \sqrt {2} - 2 \right |}}{{\left | 2 \, x + 2 \, \sqrt {2} - 2 \right |}}\right ) - \frac {7 \, x^{5} - 46 \, x^{3} + 31 \, x}{32 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )}} + \frac {3}{128} \, \log \left ({\left | x^{2} + 2 \, x - 1 \right |}\right ) - \frac {3}{128} \, \log \left ({\left | x^{2} - 2 \, x - 1 \right |}\right ) + \frac {1}{8} \, \log \left ({\left | x + 1 \right |}\right ) - \frac {1}{8} \, \log \left ({\left | x - 1 \right |}\right ) \]

input
integrate((x^2+1)/(-x^6+7*x^4-7*x^2+1)^2,x, algorithm="giac")
 
output
1/64*sqrt(2)*log(abs(2*x - 2*sqrt(2) + 2)/abs(2*x + 2*sqrt(2) + 2)) + 1/64 
*sqrt(2)*log(abs(2*x - 2*sqrt(2) - 2)/abs(2*x + 2*sqrt(2) - 2)) - 1/32*(7* 
x^5 - 46*x^3 + 31*x)/(x^6 - 7*x^4 + 7*x^2 - 1) + 3/128*log(abs(x^2 + 2*x - 
 1)) - 3/128*log(abs(x^2 - 2*x - 1)) + 1/8*log(abs(x + 1)) - 1/8*log(abs(x 
 - 1))
 
3.3.33.9 Mupad [B] (verification not implemented)

Time = 9.23 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.36 \[ \int \frac {1+x^2}{\left (1-7 x^2+7 x^4-x^6\right )^2} \, dx=-\frac {\mathrm {atan}\left (x\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{4}-\frac {\frac {7\,x^5}{32}-\frac {23\,x^3}{16}+\frac {31\,x}{32}}{x^6-7\,x^4+7\,x^2-1}+\mathrm {atan}\left (\frac {x\,23313{}\mathrm {i}}{8192\,\left (\frac {27309\,\sqrt {2}}{32768}-\frac {19317}{16384}\right )}-\frac {\sqrt {2}\,x\,65943{}\mathrm {i}}{32768\,\left (\frac {27309\,\sqrt {2}}{32768}-\frac {19317}{16384}\right )}\right )\,\left (\frac {\sqrt {2}\,1{}\mathrm {i}}{32}-\frac {3}{64}{}\mathrm {i}\right )+\mathrm {atan}\left (\frac {x\,23313{}\mathrm {i}}{8192\,\left (\frac {27309\,\sqrt {2}}{32768}+\frac {19317}{16384}\right )}+\frac {\sqrt {2}\,x\,65943{}\mathrm {i}}{32768\,\left (\frac {27309\,\sqrt {2}}{32768}+\frac {19317}{16384}\right )}\right )\,\left (\frac {\sqrt {2}\,1{}\mathrm {i}}{32}+\frac {3}{64}{}\mathrm {i}\right ) \]

input
int((x^2 + 1)/(7*x^2 - 7*x^4 + x^6 - 1)^2,x)
 
output
atan((x*23313i)/(8192*((27309*2^(1/2))/32768 - 19317/16384)) - (2^(1/2)*x* 
65943i)/(32768*((27309*2^(1/2))/32768 - 19317/16384)))*((2^(1/2)*1i)/32 - 
3i/64) - ((31*x)/32 - (23*x^3)/16 + (7*x^5)/32)/(7*x^2 - 7*x^4 + x^6 - 1) 
- (atan(x*1i)*1i)/4 + atan((x*23313i)/(8192*((27309*2^(1/2))/32768 + 19317 
/16384)) + (2^(1/2)*x*65943i)/(32768*((27309*2^(1/2))/32768 + 19317/16384) 
))*((2^(1/2)*1i)/32 + 3i/64)