3.5.2 \(\int \frac {(d+e x)^2}{(a+c x^4)^2} \, dx\) [402]

3.5.2.1 Optimal result
3.5.2.2 Mathematica [A] (verified)
3.5.2.3 Rubi [A] (verified)
3.5.2.4 Maple [C] (verified)
3.5.2.5 Fricas [C] (verification not implemented)
3.5.2.6 Sympy [A] (verification not implemented)
3.5.2.7 Maxima [A] (verification not implemented)
3.5.2.8 Giac [A] (verification not implemented)
3.5.2.9 Mupad [B] (verification not implemented)

3.5.2.1 Optimal result

Integrand size = 17, antiderivative size = 322 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\frac {x (d+e x)^2}{4 a \left (a+c x^4\right )}+\frac {d e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 a^{3/2} \sqrt {c}}-\frac {\left (3 \sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} c^{3/4}}+\frac {\left (3 \sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} c^{3/4}}-\frac {\left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} c^{3/4}}+\frac {\left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} c^{3/4}} \]

output
1/4*x*(e*x+d)^2/a/(c*x^4+a)+1/2*d*e*arctan(x^2*c^(1/2)/a^(1/2))/a^(3/2)/c^ 
(1/2)-1/32*ln(-a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))*(-e^2*a^(1/2 
)+3*d^2*c^(1/2))/a^(7/4)/c^(3/4)*2^(1/2)+1/32*ln(a^(1/4)*c^(1/4)*x*2^(1/2) 
+a^(1/2)+x^2*c^(1/2))*(-e^2*a^(1/2)+3*d^2*c^(1/2))/a^(7/4)/c^(3/4)*2^(1/2) 
+1/16*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))*(e^2*a^(1/2)+3*d^2*c^(1/2))/a^( 
7/4)/c^(3/4)*2^(1/2)+1/16*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4))*(e^2*a^(1/2) 
+3*d^2*c^(1/2))/a^(7/4)/c^(3/4)*2^(1/2)
 
3.5.2.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.00 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {8 a x (d+e x)^2}{a+c x^4}-\frac {2 \sqrt [4]{a} \left (3 \sqrt {2} \sqrt {c} d^2+8 \sqrt [4]{a} \sqrt [4]{c} d e+\sqrt {2} \sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {2 \sqrt [4]{a} \left (3 \sqrt {2} \sqrt {c} d^2-8 \sqrt [4]{a} \sqrt [4]{c} d e+\sqrt {2} \sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {\sqrt {2} \left (-3 \sqrt [4]{a} \sqrt {c} d^2+a^{3/4} e^2\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}+\frac {\sqrt {2} \left (3 \sqrt [4]{a} \sqrt {c} d^2-a^{3/4} e^2\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}}{32 a^2} \]

input
Integrate[(d + e*x)^2/(a + c*x^4)^2,x]
 
output
((8*a*x*(d + e*x)^2)/(a + c*x^4) - (2*a^(1/4)*(3*Sqrt[2]*Sqrt[c]*d^2 + 8*a 
^(1/4)*c^(1/4)*d*e + Sqrt[2]*Sqrt[a]*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a 
^(1/4)])/c^(3/4) + (2*a^(1/4)*(3*Sqrt[2]*Sqrt[c]*d^2 - 8*a^(1/4)*c^(1/4)*d 
*e + Sqrt[2]*Sqrt[a]*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/4) 
 + (Sqrt[2]*(-3*a^(1/4)*Sqrt[c]*d^2 + a^(3/4)*e^2)*Log[Sqrt[a] - Sqrt[2]*a 
^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(3/4) + (Sqrt[2]*(3*a^(1/4)*Sqrt[c]*d^2 
 - a^(3/4)*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^ 
(3/4))/(32*a^2)
 
3.5.2.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {2394, 25, 2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 2394

\(\displaystyle \frac {x (d+e x)^2}{4 a \left (a+c x^4\right )}-\frac {\int -\frac {3 d^2+4 e x d+e^2 x^2}{c x^4+a}dx}{4 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {3 d^2+4 e x d+e^2 x^2}{c x^4+a}dx}{4 a}+\frac {x (d+e x)^2}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 2415

\(\displaystyle \frac {\int \left (\frac {4 d e x}{c x^4+a}+\frac {3 d^2+e^2 x^2}{c x^4+a}\right )dx}{4 a}+\frac {x (d+e x)^2}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} e^2+3 \sqrt {c} d^2\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {a} e^2+3 \sqrt {c} d^2\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {2 d e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}}{4 a}+\frac {x (d+e x)^2}{4 a \left (a+c x^4\right )}\)

input
Int[(d + e*x)^2/(a + c*x^4)^2,x]
 
output
(x*(d + e*x)^2)/(4*a*(a + c*x^4)) + ((2*d*e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]]) 
/(Sqrt[a]*Sqrt[c]) - ((3*Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 - (Sqrt[2]*c^ 
(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) + ((3*Sqrt[c]*d^2 + Sqrt[a] 
*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) 
 - ((3*Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x 
+ Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4)) + ((3*Sqrt[c]*d^2 - Sqrt[a]*e^ 
2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3 
/4)*c^(3/4)))/(4*a)
 

3.5.2.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2394
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-x)*Pq*((a + b 
*x^n)^(p + 1)/(a*n*(p + 1))), x] + Simp[1/(a*n*(p + 1))   Int[ExpandToSum[n 
*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x 
] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
3.5.2.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.82 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.28

method result size
risch \(\frac {\frac {e^{2} x^{3}}{4 a}+\frac {e d \,x^{2}}{2 a}+\frac {d^{2} x}{4 a}}{c \,x^{4}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (e^{2} \textit {\_R}^{2}+4 e d \textit {\_R} +3 d^{2}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{16 a c}\) \(90\)
default \(d^{2} \left (\frac {x}{4 a \left (c \,x^{4}+a \right )}+\frac {3 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a^{2}}\right )+2 e d \left (\frac {x^{2}}{4 a \left (c \,x^{4}+a \right )}+\frac {\arctan \left (x^{2} \sqrt {\frac {c}{a}}\right )}{4 a \sqrt {a c}}\right )+e^{2} \left (\frac {x^{3}}{4 a \left (c \,x^{4}+a \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a c \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )\) \(293\)

input
int((e*x+d)^2/(c*x^4+a)^2,x,method=_RETURNVERBOSE)
 
output
(1/4*e^2/a*x^3+1/2*e*d/a*x^2+1/4/a*d^2*x)/(c*x^4+a)+1/16/a/c*sum((_R^2*e^2 
+4*_R*d*e+3*d^2)/_R^3*ln(x-_R),_R=RootOf(_Z^4*c+a))
 
3.5.2.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.74 (sec) , antiderivative size = 90963, normalized size of antiderivative = 282.49 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate((e*x+d)^2/(c*x^4+a)^2,x, algorithm="fricas")
 
output
Too large to include
 
3.5.2.6 Sympy [A] (verification not implemented)

Time = 3.73 (sec) , antiderivative size = 318, normalized size of antiderivative = 0.99 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\operatorname {RootSum} {\left (65536 t^{4} a^{7} c^{3} + 11264 t^{2} a^{4} c^{2} d^{2} e^{2} + t \left (256 a^{3} c d e^{5} - 2304 a^{2} c^{2} d^{5} e\right ) + a^{2} e^{8} + 82 a c d^{4} e^{4} + 81 c^{2} d^{8}, \left ( t \mapsto t \log {\left (x + \frac {4096 t^{3} a^{7} c^{2} e^{6} + 356352 t^{3} a^{6} c^{3} d^{4} e^{2} - 23552 t^{2} a^{5} c^{2} d^{3} e^{5} + 27648 t^{2} a^{4} c^{3} d^{7} e + 912 t a^{4} c d^{2} e^{8} + 43584 t a^{3} c^{2} d^{6} e^{4} + 3888 t a^{2} c^{3} d^{10} + 12 a^{3} d e^{11} - 1088 a^{2} c d^{5} e^{7} - 7020 a c^{2} d^{9} e^{3}}{a^{3} e^{12} - 649 a^{2} c d^{4} e^{8} - 5841 a c^{2} d^{8} e^{4} + 729 c^{3} d^{12}} \right )} \right )\right )} + \frac {d^{2} x + 2 d e x^{2} + e^{2} x^{3}}{4 a^{2} + 4 a c x^{4}} \]

input
integrate((e*x+d)**2/(c*x**4+a)**2,x)
 
output
RootSum(65536*_t**4*a**7*c**3 + 11264*_t**2*a**4*c**2*d**2*e**2 + _t*(256* 
a**3*c*d*e**5 - 2304*a**2*c**2*d**5*e) + a**2*e**8 + 82*a*c*d**4*e**4 + 81 
*c**2*d**8, Lambda(_t, _t*log(x + (4096*_t**3*a**7*c**2*e**6 + 356352*_t** 
3*a**6*c**3*d**4*e**2 - 23552*_t**2*a**5*c**2*d**3*e**5 + 27648*_t**2*a**4 
*c**3*d**7*e + 912*_t*a**4*c*d**2*e**8 + 43584*_t*a**3*c**2*d**6*e**4 + 38 
88*_t*a**2*c**3*d**10 + 12*a**3*d*e**11 - 1088*a**2*c*d**5*e**7 - 7020*a*c 
**2*d**9*e**3)/(a**3*e**12 - 649*a**2*c*d**4*e**8 - 5841*a*c**2*d**8*e**4 
+ 729*c**3*d**12)))) + (d**2*x + 2*d*e*x**2 + e**2*x**3)/(4*a**2 + 4*a*c*x 
**4)
 
3.5.2.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 318, normalized size of antiderivative = 0.99 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\frac {e^{2} x^{3} + 2 \, d e x^{2} + d^{2} x}{4 \, {\left (a c x^{4} + a^{2}\right )}} + \frac {\frac {\sqrt {2} {\left (3 \, \sqrt {c} d^{2} - \sqrt {a} e^{2}\right )} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (3 \, \sqrt {c} d^{2} - \sqrt {a} e^{2}\right )} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {3}{4}}} + \frac {2 \, {\left (3 \, \sqrt {2} a^{\frac {1}{4}} c^{\frac {3}{4}} d^{2} + \sqrt {2} a^{\frac {3}{4}} c^{\frac {1}{4}} e^{2} - 8 \, \sqrt {a} \sqrt {c} d e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {3}{4}}} + \frac {2 \, {\left (3 \, \sqrt {2} a^{\frac {1}{4}} c^{\frac {3}{4}} d^{2} + \sqrt {2} a^{\frac {3}{4}} c^{\frac {1}{4}} e^{2} + 8 \, \sqrt {a} \sqrt {c} d e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {3}{4}}}}{32 \, a} \]

input
integrate((e*x+d)^2/(c*x^4+a)^2,x, algorithm="maxima")
 
output
1/4*(e^2*x^3 + 2*d*e*x^2 + d^2*x)/(a*c*x^4 + a^2) + 1/32*(sqrt(2)*(3*sqrt( 
c)*d^2 - sqrt(a)*e^2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a 
))/(a^(3/4)*c^(3/4)) - sqrt(2)*(3*sqrt(c)*d^2 - sqrt(a)*e^2)*log(sqrt(c)*x 
^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4)) + 2*(3*sqrt(2) 
*a^(1/4)*c^(3/4)*d^2 + sqrt(2)*a^(3/4)*c^(1/4)*e^2 - 8*sqrt(a)*sqrt(c)*d*e 
)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)* 
sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(3/4)) + 2*(3*sqrt(2)*a^(1/4)*c 
^(3/4)*d^2 + sqrt(2)*a^(3/4)*c^(1/4)*e^2 + 8*sqrt(a)*sqrt(c)*d*e)*arctan(1 
/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/ 
(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(3/4)))/a
 
3.5.2.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.01 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\frac {e^{2} x^{3} + 2 \, d e x^{2} + d^{2} x}{4 \, {\left (c x^{4} + a\right )} a} + \frac {\sqrt {2} {\left (4 \, \sqrt {2} \sqrt {a c} c^{2} d e + 3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{3}} + \frac {\sqrt {2} {\left (4 \, \sqrt {2} \sqrt {a c} c^{2} d e + 3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{3}} + \frac {\sqrt {2} {\left (3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c^{3}} - \frac {\sqrt {2} {\left (3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c^{3}} \]

input
integrate((e*x+d)^2/(c*x^4+a)^2,x, algorithm="giac")
 
output
1/4*(e^2*x^3 + 2*d*e*x^2 + d^2*x)/((c*x^4 + a)*a) + 1/16*sqrt(2)*(4*sqrt(2 
)*sqrt(a*c)*c^2*d*e + 3*(a*c^3)^(1/4)*c^2*d^2 + (a*c^3)^(3/4)*e^2)*arctan( 
1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3) + 1/16*sqrt 
(2)*(4*sqrt(2)*sqrt(a*c)*c^2*d*e + 3*(a*c^3)^(1/4)*c^2*d^2 + (a*c^3)^(3/4) 
*e^2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3 
) + 1/32*sqrt(2)*(3*(a*c^3)^(1/4)*c^2*d^2 - (a*c^3)^(3/4)*e^2)*log(x^2 + s 
qrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c^3) - 1/32*sqrt(2)*(3*(a*c^3)^(1/4 
)*c^2*d^2 - (a*c^3)^(3/4)*e^2)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c) 
)/(a^2*c^3)
 
3.5.2.9 Mupad [B] (verification not implemented)

Time = 9.25 (sec) , antiderivative size = 391, normalized size of antiderivative = 1.21 \[ \int \frac {(d+e x)^2}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {d^2\,x}{4\,a}+\frac {e^2\,x^3}{4\,a}+\frac {d\,e\,x^2}{2\,a}}{c\,x^4+a}+\left (\sum _{k=1}^4\ln \left (\frac {39\,c^2\,d^4\,e^2-a\,c\,e^6}{64\,a^3}-\mathrm {root}\left (65536\,a^7\,c^3\,z^4+11264\,a^4\,c^2\,d^2\,e^2\,z^2-2304\,a^2\,c^2\,d^5\,e\,z+256\,a^3\,c\,d\,e^5\,z+82\,a\,c\,d^4\,e^4+81\,c^2\,d^8+a^2\,e^8,z,k\right )\,\left (\mathrm {root}\left (65536\,a^7\,c^3\,z^4+11264\,a^4\,c^2\,d^2\,e^2\,z^2-2304\,a^2\,c^2\,d^5\,e\,z+256\,a^3\,c\,d\,e^5\,z+82\,a\,c\,d^4\,e^4+81\,c^2\,d^8+a^2\,e^8,z,k\right )\,\left (12\,c^3\,d^2-16\,c^3\,d\,e\,x\right )+\frac {x\,\left (18\,a\,c^3\,d^4-2\,a^2\,c^2\,e^4\right )}{8\,a^3}+\frac {2\,c^2\,d\,e^3}{a}\right )+\frac {5\,c^2\,d^3\,e^3\,x}{8\,a^3}\right )\,\mathrm {root}\left (65536\,a^7\,c^3\,z^4+11264\,a^4\,c^2\,d^2\,e^2\,z^2-2304\,a^2\,c^2\,d^5\,e\,z+256\,a^3\,c\,d\,e^5\,z+82\,a\,c\,d^4\,e^4+81\,c^2\,d^8+a^2\,e^8,z,k\right )\right ) \]

input
int((d + e*x)^2/(a + c*x^4)^2,x)
 
output
((d^2*x)/(4*a) + (e^2*x^3)/(4*a) + (d*e*x^2)/(2*a))/(a + c*x^4) + symsum(l 
og((39*c^2*d^4*e^2 - a*c*e^6)/(64*a^3) - root(65536*a^7*c^3*z^4 + 11264*a^ 
4*c^2*d^2*e^2*z^2 - 2304*a^2*c^2*d^5*e*z + 256*a^3*c*d*e^5*z + 82*a*c*d^4* 
e^4 + 81*c^2*d^8 + a^2*e^8, z, k)*(root(65536*a^7*c^3*z^4 + 11264*a^4*c^2* 
d^2*e^2*z^2 - 2304*a^2*c^2*d^5*e*z + 256*a^3*c*d*e^5*z + 82*a*c*d^4*e^4 + 
81*c^2*d^8 + a^2*e^8, z, k)*(12*c^3*d^2 - 16*c^3*d*e*x) + (x*(18*a*c^3*d^4 
 - 2*a^2*c^2*e^4))/(8*a^3) + (2*c^2*d*e^3)/a) + (5*c^2*d^3*e^3*x)/(8*a^3)) 
*root(65536*a^7*c^3*z^4 + 11264*a^4*c^2*d^2*e^2*z^2 - 2304*a^2*c^2*d^5*e*z 
 + 256*a^3*c*d*e^5*z + 82*a*c*d^4*e^4 + 81*c^2*d^8 + a^2*e^8, z, k), k, 1, 
 4)