3.1.55 \(\int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx\) [55]

3.1.55.1 Optimal result
3.1.55.2 Mathematica [C] (verified)
3.1.55.3 Rubi [A] (verified)
3.1.55.4 Maple [C] (verified)
3.1.55.5 Fricas [C] (verification not implemented)
3.1.55.6 Sympy [B] (verification not implemented)
3.1.55.7 Maxima [F]
3.1.55.8 Giac [C] (verification not implemented)
3.1.55.9 Mupad [B] (verification not implemented)

3.1.55.1 Optimal result

Integrand size = 17, antiderivative size = 234 \[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=\frac {1}{2} \arctan \left (\frac {1}{2} \left (-1+\left (1+\frac {1}{x}\right )^2\right )\right )-\frac {1}{2} \sqrt {\frac {1}{5} \left (2+\sqrt {5}\right )} \arctan \left (\frac {2-\sqrt {2 \left (1+\sqrt {5}\right )}+\frac {2}{x}}{\sqrt {2 \left (-1+\sqrt {5}\right )}}\right )-\frac {1}{2} \sqrt {\frac {1}{5} \left (2+\sqrt {5}\right )} \arctan \left (\frac {2+\sqrt {2 \left (1+\sqrt {5}\right )}+\frac {2}{x}}{\sqrt {2 \left (-1+\sqrt {5}\right )}}\right )-\frac {1}{4} \sqrt {\frac {1}{5} \left (-2+\sqrt {5}\right )} \log \left (\sqrt {5}-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\left (1+\frac {1}{x}\right )^2\right )+\frac {1}{4} \sqrt {\frac {1}{5} \left (-2+\sqrt {5}\right )} \log \left (\sqrt {5}+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\left (1+\frac {1}{x}\right )^2\right ) \]

output
1/2*arctan(-1/2+1/2*(1+1/x)^2)-1/20*ln((1+1/x)^2+5^(1/2)-(1+1/x)*(2+2*5^(1 
/2))^(1/2))*(-10+5*5^(1/2))^(1/2)+1/20*ln((1+1/x)^2+5^(1/2)+(1+1/x)*(2+2*5 
^(1/2))^(1/2))*(-10+5*5^(1/2))^(1/2)-1/10*arctan((2+2/x-(2+2*5^(1/2))^(1/2 
))/(-2+2*5^(1/2))^(1/2))*(10+5*5^(1/2))^(1/2)-1/10*arctan((2+2/x+(2+2*5^(1 
/2))^(1/2))/(-2+2*5^(1/2))^(1/2))*(10+5*5^(1/2))^(1/2)
 
3.1.55.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.20 \[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=\frac {1}{4} \text {RootSum}\left [1+4 \text {$\#$1}+4 \text {$\#$1}^2+4 \text {$\#$1}^4\&,\frac {\log (x-\text {$\#$1})}{1+2 \text {$\#$1}+4 \text {$\#$1}^3}\&\right ] \]

input
Integrate[(1 + 4*x + 4*x^2 + 4*x^4)^(-1),x]
 
output
RootSum[1 + 4*#1 + 4*#1^2 + 4*#1^4 & , Log[x - #1]/(1 + 2*#1 + 4*#1^3) & ] 
/4
 
3.1.55.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.15, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.765, Rules used = {2504, 27, 2202, 27, 1432, 1083, 217, 1483, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{4 x^4+4 x^2+4 x+1} \, dx\)

\(\Big \downarrow \) 2504

\(\displaystyle -16 \int \frac {1}{16 \left (\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5\right ) x^2}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle -\int \frac {1}{\left (\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5\right ) x^2}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 2202

\(\displaystyle -\int \frac {\left (1+\frac {1}{x}\right )^2+1}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )-\int -\frac {2 \left (1+\frac {1}{x}\right )}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {1+\frac {1}{x}}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )-\int \frac {\left (1+\frac {1}{x}\right )^2+1}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 1432

\(\displaystyle \int \frac {1}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )^2-\int \frac {\left (1+\frac {1}{x}\right )^2+1}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle -2 \int \frac {1}{-\left (1+\frac {1}{x}\right )^4-16}d\left (2 \left (1+\frac {1}{x}\right )^2-2\right )-\int \frac {\left (1+\frac {1}{x}\right )^2+1}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )-\int \frac {\left (1+\frac {1}{x}\right )^2+1}{\left (1+\frac {1}{x}\right )^4-2 \left (1+\frac {1}{x}\right )^2+5}d\left (1+\frac {1}{x}\right )\)

\(\Big \downarrow \) 1483

\(\displaystyle -\frac {\int \frac {\sqrt {2 \left (1+\sqrt {5}\right )}-\left (1-\sqrt {5}\right ) \left (1+\frac {1}{x}\right )}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}-\frac {\int \frac {\left (1-\sqrt {5}\right ) \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )\)

\(\Big \downarrow \) 1142

\(\displaystyle -\frac {\frac {\left (1+\sqrt {5}\right )^{3/2} \int \frac {1}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{\sqrt {2}}-\frac {1}{2} \left (1-\sqrt {5}\right ) \int -\frac {\sqrt {2 \left (1+\sqrt {5}\right )}-2 \left (1+\frac {1}{x}\right )}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}-\frac {\frac {\left (1+\sqrt {5}\right )^{3/2} \int \frac {1}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{\sqrt {2}}+\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {2 \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\left (1+\sqrt {5}\right )^{3/2} \int \frac {1}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{\sqrt {2}}+\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {\sqrt {2 \left (1+\sqrt {5}\right )}-2 \left (1+\frac {1}{x}\right )}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}-\frac {\frac {\left (1+\sqrt {5}\right )^{3/2} \int \frac {1}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{\sqrt {2}}+\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {2 \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {\sqrt {2 \left (1+\sqrt {5}\right )}-2 \left (1+\frac {1}{x}\right )}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )-\sqrt {2} \left (1+\sqrt {5}\right )^{3/2} \int \frac {1}{2 \left (1-\sqrt {5}\right )-\left (2 \left (1+\frac {1}{x}\right )-\sqrt {2 \left (1+\sqrt {5}\right )}\right )^2}d\left (2 \left (1+\frac {1}{x}\right )-\sqrt {2 \left (1+\sqrt {5}\right )}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}-\frac {\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {2 \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )-\sqrt {2} \left (1+\sqrt {5}\right )^{3/2} \int \frac {1}{2 \left (1-\sqrt {5}\right )-\left (2 \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}\right )^2}d\left (2 \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {\sqrt {2 \left (1+\sqrt {5}\right )}-2 \left (1+\frac {1}{x}\right )}{\left (1+\frac {1}{x}\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )+\frac {\left (1+\sqrt {5}\right )^{3/2} \arctan \left (\frac {2 \left (\frac {1}{x}+1\right )-\sqrt {2 \left (1+\sqrt {5}\right )}}{\sqrt {2 \left (\sqrt {5}-1\right )}}\right )}{\sqrt {\sqrt {5}-1}}}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}-\frac {\frac {1}{2} \left (1-\sqrt {5}\right ) \int \frac {2 \left (1+\frac {1}{x}\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\left (1+\frac {1}{x}\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (1+\frac {1}{x}\right )+\sqrt {5}}d\left (1+\frac {1}{x}\right )+\frac {\left (1+\sqrt {5}\right )^{3/2} \arctan \left (\frac {2 \left (\frac {1}{x}+1\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\sqrt {2 \left (\sqrt {5}-1\right )}}\right )}{\sqrt {\sqrt {5}-1}}}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{2} \arctan \left (\frac {1}{4} \left (2 \left (\frac {1}{x}+1\right )^2-2\right )\right )-\frac {\frac {\left (1+\sqrt {5}\right )^{3/2} \arctan \left (\frac {2 \left (\frac {1}{x}+1\right )-\sqrt {2 \left (1+\sqrt {5}\right )}}{\sqrt {2 \left (\sqrt {5}-1\right )}}\right )}{\sqrt {\sqrt {5}-1}}-\frac {1}{2} \left (1-\sqrt {5}\right ) \log \left (\left (\frac {1}{x}+1\right )^2-\sqrt {2 \left (1+\sqrt {5}\right )} \left (\frac {1}{x}+1\right )+\sqrt {5}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}-\frac {\frac {\left (1+\sqrt {5}\right )^{3/2} \arctan \left (\frac {2 \left (\frac {1}{x}+1\right )+\sqrt {2 \left (1+\sqrt {5}\right )}}{\sqrt {2 \left (\sqrt {5}-1\right )}}\right )}{\sqrt {\sqrt {5}-1}}+\frac {1}{2} \left (1-\sqrt {5}\right ) \log \left (\left (\frac {1}{x}+1\right )^2+\sqrt {2 \left (1+\sqrt {5}\right )} \left (\frac {1}{x}+1\right )+\sqrt {5}\right )}{2 \sqrt {10 \left (1+\sqrt {5}\right )}}\)

input
Int[(1 + 4*x + 4*x^2 + 4*x^4)^(-1),x]
 
output
ArcTan[(-2 + 2*(1 + x^(-1))^2)/4]/2 - (((1 + Sqrt[5])^(3/2)*ArcTan[(-Sqrt[ 
2*(1 + Sqrt[5])] + 2*(1 + x^(-1)))/Sqrt[2*(-1 + Sqrt[5])]])/Sqrt[-1 + Sqrt 
[5]] - ((1 - Sqrt[5])*Log[Sqrt[5] - Sqrt[2*(1 + Sqrt[5])]*(1 + x^(-1)) + ( 
1 + x^(-1))^2])/2)/(2*Sqrt[10*(1 + Sqrt[5])]) - (((1 + Sqrt[5])^(3/2)*ArcT 
an[(Sqrt[2*(1 + Sqrt[5])] + 2*(1 + x^(-1)))/Sqrt[2*(-1 + Sqrt[5])]])/Sqrt[ 
-1 + Sqrt[5]] + ((1 - Sqrt[5])*Log[Sqrt[5] + Sqrt[2*(1 + Sqrt[5])]*(1 + x^ 
(-1)) + (1 + x^(-1))^2])/2)/(2*Sqrt[10*(1 + Sqrt[5])])
 

3.1.55.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 

rule 2504
Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1] 
, c = Coeff[P4, x, 2], d = Coeff[P4, x, 3], e = Coeff[P4, x, 4]}, Simp[-16* 
a^2   Subst[Int[(1/(b - 4*a*x)^2)*(a*((-3*b^4 + 16*a*b^2*c - 64*a^2*b*d + 2 
56*a^3*e - 32*a^2*(3*b^2 - 8*a*c)*x^2 + 256*a^4*x^4)/(b - 4*a*x)^4))^p, x], 
 x, b/(4*a) + 1/x], x] /; NeQ[a, 0] && NeQ[b, 0] && EqQ[b^3 - 4*a*b*c + 8*a 
^2*d, 0]] /; FreeQ[p, x] && PolyQ[P4, x, 4] && IntegerQ[2*p] &&  !IGtQ[p, 0 
]
 
3.1.55.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.18

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (4 \textit {\_Z}^{4}+4 \textit {\_Z}^{2}+4 \textit {\_Z} +1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{4 \textit {\_R}^{3}+2 \textit {\_R} +1}\right )}{4}\) \(41\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (4 \textit {\_Z}^{4}+4 \textit {\_Z}^{2}+4 \textit {\_Z} +1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{4 \textit {\_R}^{3}+2 \textit {\_R} +1}\right )}{4}\) \(41\)

input
int(1/(4*x^4+4*x^2+4*x+1),x,method=_RETURNVERBOSE)
 
output
1/4*sum(1/(4*_R^3+2*_R+1)*ln(x-_R),_R=RootOf(4*_Z^4+4*_Z^2+4*_Z+1))
 
3.1.55.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.99 (sec) , antiderivative size = 499, normalized size of antiderivative = 2.13 \[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=\text {Too large to display} \]

input
integrate(1/(4*x^4+4*x^2+4*x+1),x, algorithm="fricas")
 
output
-1/20*(sqrt(10)*sqrt(-15/8*(2*sqrt(1/10*I - 1/5) - I)^2 - 5/4*(2*sqrt(1/10 
*I - 1/5) - I)*(2*sqrt(-1/10*I - 1/5) + I) - 15/8*(2*sqrt(-1/10*I - 1/5) + 
 I)^2 - 9) - 5*sqrt(1/10*I - 1/5) - 5*sqrt(-1/10*I - 1/5))*log(5/2*(2*sqrt 
(1/10*I - 1/5) - I)^2*(12*sqrt(-1/10*I - 1/5) + 6*I - 1) + 15*(2*sqrt(1/10 
*I - 1/5) - I)*(2*sqrt(-1/10*I - 1/5) + I)^2 - 5/2*(2*sqrt(-1/10*I - 1/5) 
+ I)^2 + ((6*sqrt(10)*(2*sqrt(-1/10*I - 1/5) + I) - sqrt(10))*(2*sqrt(1/10 
*I - 1/5) - I) - sqrt(10)*(2*sqrt(-1/10*I - 1/5) + I))*sqrt(-15/8*(2*sqrt( 
1/10*I - 1/5) - I)^2 - 5/4*(2*sqrt(1/10*I - 1/5) - I)*(2*sqrt(-1/10*I - 1/ 
5) + I) - 15/8*(2*sqrt(-1/10*I - 1/5) + I)^2 - 9) + 8*x + 3) + 1/20*(sqrt( 
10)*sqrt(-15/8*(2*sqrt(1/10*I - 1/5) - I)^2 - 5/4*(2*sqrt(1/10*I - 1/5) - 
I)*(2*sqrt(-1/10*I - 1/5) + I) - 15/8*(2*sqrt(-1/10*I - 1/5) + I)^2 - 9) + 
 5*sqrt(1/10*I - 1/5) + 5*sqrt(-1/10*I - 1/5))*log(5/2*(2*sqrt(1/10*I - 1/ 
5) - I)^2*(12*sqrt(-1/10*I - 1/5) + 6*I - 1) + 15*(2*sqrt(1/10*I - 1/5) - 
I)*(2*sqrt(-1/10*I - 1/5) + I)^2 - 5/2*(2*sqrt(-1/10*I - 1/5) + I)^2 - ((6 
*sqrt(10)*(2*sqrt(-1/10*I - 1/5) + I) - sqrt(10))*(2*sqrt(1/10*I - 1/5) - 
I) - sqrt(10)*(2*sqrt(-1/10*I - 1/5) + I))*sqrt(-15/8*(2*sqrt(1/10*I - 1/5 
) - I)^2 - 5/4*(2*sqrt(1/10*I - 1/5) - I)*(2*sqrt(-1/10*I - 1/5) + I) - 15 
/8*(2*sqrt(-1/10*I - 1/5) + I)^2 - 9) + 8*x + 3) - 1/4*(2*sqrt(1/10*I - 1/ 
5) - I)*log(-5*(2*sqrt(1/10*I - 1/5) - I)^2*(12*sqrt(-1/10*I - 1/5) + 6*I 
- 1) - 30*(2*sqrt(1/10*I - 1/5) - I)*(2*sqrt(-1/10*I - 1/5) + I)^2 - 30...
 
3.1.55.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3432 vs. \(2 (190) = 380\).

Time = 1.34 (sec) , antiderivative size = 3432, normalized size of antiderivative = 14.67 \[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=\text {Too large to display} \]

input
integrate(1/(4*x**4+4*x**2+4*x+1),x)
 
output
sqrt(-1/40 + sqrt(5)/80)*log(x**2 + x*(-8 - 21*sqrt(5)*sqrt(-2 + sqrt(5))/ 
10 - sqrt(-2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)/2 - sqrt(5)/2 + 12 
*sqrt(-2 + sqrt(5)) + 9*sqrt(5)*sqrt(-2 + sqrt(5))*sqrt(-2*sqrt(5)*sqrt(-2 
 + sqrt(5)) + sqrt(5) + 19)/5) - 841*sqrt(5)*sqrt(-2*sqrt(5)*sqrt(-2 + sqr 
t(5)) + sqrt(5) + 19)/20 - 14351/40 - 441*sqrt(-2 + sqrt(5))/4 - 75*sqrt(5 
)*sqrt(-2 + sqrt(5))*sqrt(-2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)/8 
- 3*sqrt(-2 + sqrt(5))*sqrt(-2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19) 
+ 301*sqrt(5)*sqrt(-2 + sqrt(5))/10 + 7407*sqrt(5)/40 + 3913*sqrt(-2*sqrt( 
5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)/40) - sqrt(-1/40 + sqrt(5)/80)*log(x 
**2 + x*(-8 - 12*sqrt(-2 + sqrt(5)) - sqrt(5)/2 + 21*sqrt(5)*sqrt(-2 + sqr 
t(5))/10 + sqrt(2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)/2 + 9*sqrt(5) 
*sqrt(-2 + sqrt(5))*sqrt(2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)/5) - 
 3913*sqrt(2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)/40 - 14351/40 - 75 
*sqrt(5)*sqrt(-2 + sqrt(5))*sqrt(2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 
19)/8 - 301*sqrt(5)*sqrt(-2 + sqrt(5))/10 - 3*sqrt(-2 + sqrt(5))*sqrt(2*sq 
rt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19) + 441*sqrt(-2 + sqrt(5))/4 + 7407 
*sqrt(5)/40 + 841*sqrt(5)*sqrt(2*sqrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19 
)/20) - 2*sqrt(3/80 + 3*sqrt(5)/80 + sqrt(-2*sqrt(5)*sqrt(-2 + sqrt(5)) + 
sqrt(5) + 19)/40)*atan(-20*x/(-27*sqrt(5)*sqrt(3 + 3*sqrt(5) + 2*sqrt(-2*s 
qrt(5)*sqrt(-2 + sqrt(5)) + sqrt(5) + 19)) + 5*sqrt(-2 + sqrt(5))*sqrt(...
 
3.1.55.7 Maxima [F]

\[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=\int { \frac {1}{4 \, x^{4} + 4 \, x^{2} + 4 \, x + 1} \,d x } \]

input
integrate(1/(4*x^4+4*x^2+4*x+1),x, algorithm="maxima")
 
output
integrate(1/(4*x^4 + 4*x^2 + 4*x + 1), x)
 
3.1.55.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.13 \[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=-\frac {1}{20} \, {\left (\left (i + 2\right ) \, \sqrt {\sqrt {5} - 2} {\left (\frac {i}{\sqrt {5} - 2} + 1\right )} + 5 i\right )} \log \left (\left (406 i + 174\right ) \, \sqrt {5} x + \left (868 i + 372\right ) \, x + 29 \, \sqrt {5} \sqrt {29 \, \sqrt {5} + 62} + \left (87 i - 203\right ) \, \sqrt {5} + \left (19 i + 62\right ) \, \sqrt {29 \, \sqrt {5} + 62} + 186 i - 434\right ) - \frac {1}{20} \, {\left (\left (i + 2\right ) \, \sqrt {\sqrt {5} - 2} {\left (-\frac {i}{\sqrt {5} - 2} - 1\right )} + 5 i\right )} \log \left (\left (406 i + 174\right ) \, \sqrt {5} x + \left (868 i + 372\right ) \, x - 29 \, \sqrt {5} \sqrt {29 \, \sqrt {5} + 62} + \left (87 i - 203\right ) \, \sqrt {5} - \left (19 i + 62\right ) \, \sqrt {29 \, \sqrt {5} + 62} + 186 i - 434\right ) - \frac {1}{20} \, {\left (\left (2 i + 1\right ) \, \sqrt {\sqrt {5} + 2} {\left (-\frac {i}{\sqrt {5} + 2} - 1\right )} - 5 i\right )} \log \left (\left (26 i + 130\right ) \, \sqrt {5} x - \left (44 i + 220\right ) \, x + 13 \, \sqrt {5} \sqrt {13 \, \sqrt {5} - 22} - \left (65 i - 13\right ) \, \sqrt {5} + \left (19 i - 22\right ) \, \sqrt {13 \, \sqrt {5} - 22} + 110 i - 22\right ) - \frac {1}{20} \, {\left (\left (2 i + 1\right ) \, \sqrt {\sqrt {5} + 2} {\left (\frac {i}{\sqrt {5} + 2} + 1\right )} - 5 i\right )} \log \left (\left (26 i + 130\right ) \, \sqrt {5} x - \left (44 i + 220\right ) \, x - 13 \, \sqrt {5} \sqrt {13 \, \sqrt {5} - 22} - \left (65 i - 13\right ) \, \sqrt {5} - \left (19 i - 22\right ) \, \sqrt {13 \, \sqrt {5} - 22} + 110 i - 22\right ) \]

input
integrate(1/(4*x^4+4*x^2+4*x+1),x, algorithm="giac")
 
output
-1/20*((I + 2)*sqrt(sqrt(5) - 2)*(I/(sqrt(5) - 2) + 1) + 5*I)*log((406*I + 
 174)*sqrt(5)*x + (868*I + 372)*x + 29*sqrt(5)*sqrt(29*sqrt(5) + 62) + (87 
*I - 203)*sqrt(5) + (19*I + 62)*sqrt(29*sqrt(5) + 62) + 186*I - 434) - 1/2 
0*((I + 2)*sqrt(sqrt(5) - 2)*(-I/(sqrt(5) - 2) - 1) + 5*I)*log((406*I + 17 
4)*sqrt(5)*x + (868*I + 372)*x - 29*sqrt(5)*sqrt(29*sqrt(5) + 62) + (87*I 
- 203)*sqrt(5) - (19*I + 62)*sqrt(29*sqrt(5) + 62) + 186*I - 434) - 1/20*( 
(2*I + 1)*sqrt(sqrt(5) + 2)*(-I/(sqrt(5) + 2) - 1) - 5*I)*log((26*I + 130) 
*sqrt(5)*x - (44*I + 220)*x + 13*sqrt(5)*sqrt(13*sqrt(5) - 22) - (65*I - 1 
3)*sqrt(5) + (19*I - 22)*sqrt(13*sqrt(5) - 22) + 110*I - 22) - 1/20*((2*I 
+ 1)*sqrt(sqrt(5) + 2)*(I/(sqrt(5) + 2) + 1) - 5*I)*log((26*I + 130)*sqrt( 
5)*x - (44*I + 220)*x - 13*sqrt(5)*sqrt(13*sqrt(5) - 22) - (65*I - 13)*sqr 
t(5) - (19*I - 22)*sqrt(13*sqrt(5) - 22) + 110*I - 22)
 
3.1.55.9 Mupad [B] (verification not implemented)

Time = 10.97 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.37 \[ \int \frac {1}{1+4 x+4 x^2+4 x^4} \, dx=\sum _{k=1}^4\ln \left (-\mathrm {root}\left (z^4+\frac {9\,z^2}{40}+\frac {z}{40}+\frac {1}{1280},z,k\right )\,\left (\frac {x}{4}+\mathrm {root}\left (z^4+\frac {9\,z^2}{40}+\frac {z}{40}+\frac {1}{1280},z,k\right )\,\left (6\,x+\mathrm {root}\left (z^4+\frac {9\,z^2}{40}+\frac {z}{40}+\frac {1}{1280},z,k\right )\,\left (36\,x+16\right )\right )\right )\right )\,\mathrm {root}\left (z^4+\frac {9\,z^2}{40}+\frac {z}{40}+\frac {1}{1280},z,k\right ) \]

input
int(1/(4*x + 4*x^2 + 4*x^4 + 1),x)
 
output
symsum(log(-root(z^4 + (9*z^2)/40 + z/40 + 1/1280, z, k)*(x/4 + root(z^4 + 
 (9*z^2)/40 + z/40 + 1/1280, z, k)*(6*x + root(z^4 + (9*z^2)/40 + z/40 + 1 
/1280, z, k)*(36*x + 16))))*root(z^4 + (9*z^2)/40 + z/40 + 1/1280, z, k), 
k, 1, 4)