3.1.77 \(\int \frac {1}{(-1+7 x^2-7 x^4+x^6)^2} \, dx\) [77]

3.1.77.1 Optimal result
3.1.77.2 Mathematica [A] (verified)
3.1.77.3 Rubi [B] (verified)
3.1.77.4 Maple [A] (verified)
3.1.77.5 Fricas [B] (verification not implemented)
3.1.77.6 Sympy [B] (verification not implemented)
3.1.77.7 Maxima [A] (verification not implemented)
3.1.77.8 Giac [A] (verification not implemented)
3.1.77.9 Mupad [B] (verification not implemented)

3.1.77.1 Optimal result

Integrand size = 17, antiderivative size = 91 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=\frac {x}{32 \left (1-x^2\right )}+\frac {x \left (99-17 x^2\right )}{128 \left (1-6 x^2+x^4\right )}+\frac {5 \text {arctanh}(x)}{32}+\frac {1}{512} \left (-4+3 \sqrt {2}\right ) \text {arctanh}\left (\left (-1+\sqrt {2}\right ) x\right )+\frac {1}{512} \left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\left (1+\sqrt {2}\right ) x\right ) \]

output
1/32*x/(-x^2+1)+1/128*x*(-17*x^2+99)/(x^4-6*x^2+1)+5/32*arctanh(x)+1/512*a 
rctanh(x*(2^(1/2)-1))*(-4+3*2^(1/2))+1/512*arctanh(x*(1+2^(1/2)))*(4+3*2^( 
1/2))
 
3.1.77.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.45 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=\frac {-\frac {8 x \left (103-140 x^2+21 x^4\right )}{-1+7 x^2-7 x^4+x^6}-80 \log (1-x)-\left (4+3 \sqrt {2}\right ) \log \left (-1+\sqrt {2}-x\right )+\left (4-3 \sqrt {2}\right ) \log \left (1+\sqrt {2}-x\right )+80 \log (1+x)+\left (4+3 \sqrt {2}\right ) \log \left (-1+\sqrt {2}+x\right )+\left (-4+3 \sqrt {2}\right ) \log \left (1+\sqrt {2}+x\right )}{1024} \]

input
Integrate[(-1 + 7*x^2 - 7*x^4 + x^6)^(-2),x]
 
output
((-8*x*(103 - 140*x^2 + 21*x^4))/(-1 + 7*x^2 - 7*x^4 + x^6) - 80*Log[1 - x 
] - (4 + 3*Sqrt[2])*Log[-1 + Sqrt[2] - x] + (4 - 3*Sqrt[2])*Log[1 + Sqrt[2 
] - x] + 80*Log[1 + x] + (4 + 3*Sqrt[2])*Log[-1 + Sqrt[2] + x] + (-4 + 3*S 
qrt[2])*Log[1 + Sqrt[2] + x])/1024
 
3.1.77.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(245\) vs. \(2(91)=182\).

Time = 0.44 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.69, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2460, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (x^6-7 x^4+7 x^2-1\right )^2} \, dx\)

\(\Big \downarrow \) 2460

\(\displaystyle \int \left (\frac {29-12 x}{64 \left (x^2-2 x-1\right )^2}-\frac {5}{32 \left (x^2-1\right )}+\frac {x+6}{128 \left (x^2-2 x-1\right )}+\frac {6-x}{128 \left (x^2+2 x-1\right )}+\frac {12 x+29}{64 \left (x^2+2 x-1\right )^2}+\frac {1}{64 (x-1)^2}+\frac {1}{64 (x+1)^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {5 \text {arctanh}(x)}{32}-\frac {41-17 x}{256 \left (-x^2+2 x+1\right )}+\frac {17 x+41}{256 \left (-x^2-2 x+1\right )}+\frac {1}{64 (1-x)}-\frac {1}{64 (x+1)}+\frac {1}{512} \left (2-7 \sqrt {2}\right ) \log \left (-x-\sqrt {2}+1\right )+\frac {17 \log \left (-x-\sqrt {2}+1\right )}{512 \sqrt {2}}+\frac {1}{512} \left (2+7 \sqrt {2}\right ) \log \left (-x+\sqrt {2}+1\right )-\frac {17 \log \left (-x+\sqrt {2}+1\right )}{512 \sqrt {2}}-\frac {1}{512} \left (2-7 \sqrt {2}\right ) \log \left (x-\sqrt {2}+1\right )-\frac {17 \log \left (x-\sqrt {2}+1\right )}{512 \sqrt {2}}-\frac {1}{512} \left (2+7 \sqrt {2}\right ) \log \left (x+\sqrt {2}+1\right )+\frac {17 \log \left (x+\sqrt {2}+1\right )}{512 \sqrt {2}}\)

input
Int[(-1 + 7*x^2 - 7*x^4 + x^6)^(-2),x]
 
output
1/(64*(1 - x)) - 1/(64*(1 + x)) + (41 + 17*x)/(256*(1 - 2*x - x^2)) - (41 
- 17*x)/(256*(1 + 2*x - x^2)) + (5*ArcTanh[x])/32 + (17*Log[1 - Sqrt[2] - 
x])/(512*Sqrt[2]) + ((2 - 7*Sqrt[2])*Log[1 - Sqrt[2] - x])/512 - (17*Log[1 
 + Sqrt[2] - x])/(512*Sqrt[2]) + ((2 + 7*Sqrt[2])*Log[1 + Sqrt[2] - x])/51 
2 - (17*Log[1 - Sqrt[2] + x])/(512*Sqrt[2]) - ((2 - 7*Sqrt[2])*Log[1 - Sqr 
t[2] + x])/512 + (17*Log[1 + Sqrt[2] + x])/(512*Sqrt[2]) - ((2 + 7*Sqrt[2] 
)*Log[1 + Sqrt[2] + x])/512
 

3.1.77.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2460
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, 
Int[ExpandIntegrand[u*(Qx /. x -> x^2)^p, x], x] /;  !SumQ[NonfreeFactors[Q 
x, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] &&  !BinomialQ[Px, x] && 
 !TrinomialQ[Px, x] && ILtQ[p, 0] && RationalFunctionQ[u, x]
 
3.1.77.4 Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.27

method result size
default \(-\frac {1}{64 \left (x +1\right )}+\frac {5 \ln \left (x +1\right )}{64}-\frac {\frac {17 x}{2}+\frac {41}{2}}{128 \left (x^{2}+2 x -1\right )}-\frac {\ln \left (x^{2}+2 x -1\right )}{256}+\frac {3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x +2\right ) \sqrt {2}}{4}\right )}{512}-\frac {1}{64 \left (x -1\right )}-\frac {5 \ln \left (x -1\right )}{64}+\frac {-\frac {17 x}{2}+\frac {41}{2}}{128 x^{2}-256 x -128}+\frac {\ln \left (x^{2}-2 x -1\right )}{256}+\frac {3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x -2\right ) \sqrt {2}}{4}\right )}{512}\) \(116\)
risch \(\frac {-\frac {21}{128} x^{5}+\frac {35}{32} x^{3}-\frac {103}{128} x}{x^{6}-7 x^{4}+7 x^{2}-1}+\frac {\ln \left (x -1+\sqrt {2}\right )}{256}+\frac {3 \ln \left (x -1+\sqrt {2}\right ) \sqrt {2}}{1024}+\frac {\ln \left (x -1-\sqrt {2}\right )}{256}-\frac {3 \ln \left (x -1-\sqrt {2}\right ) \sqrt {2}}{1024}-\frac {\ln \left (1+x +\sqrt {2}\right )}{256}+\frac {3 \ln \left (1+x +\sqrt {2}\right ) \sqrt {2}}{1024}-\frac {\ln \left (1+x -\sqrt {2}\right )}{256}-\frac {3 \ln \left (1+x -\sqrt {2}\right ) \sqrt {2}}{1024}+\frac {5 \ln \left (x +1\right )}{64}-\frac {5 \ln \left (x -1\right )}{64}\) \(138\)

input
int(1/(x^6-7*x^4+7*x^2-1)^2,x,method=_RETURNVERBOSE)
 
output
-1/64/(x+1)+5/64*ln(x+1)-1/128*(17/2*x+41/2)/(x^2+2*x-1)-1/256*ln(x^2+2*x- 
1)+3/512*2^(1/2)*arctanh(1/4*(2*x+2)*2^(1/2))-1/64/(x-1)-5/64*ln(x-1)+1/12 
8*(-17/2*x+41/2)/(x^2-2*x-1)+1/256*ln(x^2-2*x-1)+3/512*2^(1/2)*arctanh(1/4 
*(2*x-2)*2^(1/2))
 
3.1.77.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (71) = 142\).

Time = 0.28 (sec) , antiderivative size = 223, normalized size of antiderivative = 2.45 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=-\frac {168 \, x^{5} - 1120 \, x^{3} - 3 \, \sqrt {2} {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (\frac {x^{2} + 2 \, \sqrt {2} {\left (x + 1\right )} + 2 \, x + 3}{x^{2} + 2 \, x - 1}\right ) - 3 \, \sqrt {2} {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (\frac {x^{2} + 2 \, \sqrt {2} {\left (x - 1\right )} - 2 \, x + 3}{x^{2} - 2 \, x - 1}\right ) + 4 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x^{2} + 2 \, x - 1\right ) - 4 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x^{2} - 2 \, x - 1\right ) - 80 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x + 1\right ) + 80 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )} \log \left (x - 1\right ) + 824 \, x}{1024 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )}} \]

input
integrate(1/(x^6-7*x^4+7*x^2-1)^2,x, algorithm="fricas")
 
output
-1/1024*(168*x^5 - 1120*x^3 - 3*sqrt(2)*(x^6 - 7*x^4 + 7*x^2 - 1)*log((x^2 
 + 2*sqrt(2)*(x + 1) + 2*x + 3)/(x^2 + 2*x - 1)) - 3*sqrt(2)*(x^6 - 7*x^4 
+ 7*x^2 - 1)*log((x^2 + 2*sqrt(2)*(x - 1) - 2*x + 3)/(x^2 - 2*x - 1)) + 4* 
(x^6 - 7*x^4 + 7*x^2 - 1)*log(x^2 + 2*x - 1) - 4*(x^6 - 7*x^4 + 7*x^2 - 1) 
*log(x^2 - 2*x - 1) - 80*(x^6 - 7*x^4 + 7*x^2 - 1)*log(x + 1) + 80*(x^6 - 
7*x^4 + 7*x^2 - 1)*log(x - 1) + 824*x)/(x^6 - 7*x^4 + 7*x^2 - 1)
 
3.1.77.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 296 vs. \(2 (75) = 150\).

Time = 0.81 (sec) , antiderivative size = 296, normalized size of antiderivative = 3.25 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=\frac {- 21 x^{5} + 140 x^{3} - 103 x}{128 x^{6} - 896 x^{4} + 896 x^{2} - 128} - \frac {5 \log {\left (x - 1 \right )}}{64} + \frac {5 \log {\left (x + 1 \right )}}{64} + \left (- \frac {1}{256} + \frac {3 \sqrt {2}}{1024}\right ) \log {\left (x - \frac {8071264001}{202624020} - \frac {471550901878784 \left (- \frac {1}{256} + \frac {3 \sqrt {2}}{1024}\right )^{3}}{2979765} + \frac {1299552375287054336 \left (- \frac {1}{256} + \frac {3 \sqrt {2}}{1024}\right )^{5}}{50656005} + \frac {8071264001 \sqrt {2}}{270165360} \right )} + \left (- \frac {3 \sqrt {2}}{1024} - \frac {1}{256}\right ) \log {\left (x - \frac {8071264001 \sqrt {2}}{270165360} - \frac {8071264001}{202624020} + \frac {1299552375287054336 \left (- \frac {3 \sqrt {2}}{1024} - \frac {1}{256}\right )^{5}}{50656005} - \frac {471550901878784 \left (- \frac {3 \sqrt {2}}{1024} - \frac {1}{256}\right )^{3}}{2979765} \right )} + \left (\frac {1}{256} - \frac {3 \sqrt {2}}{1024}\right ) \log {\left (x - \frac {8071264001 \sqrt {2}}{270165360} + \frac {1299552375287054336 \left (\frac {1}{256} - \frac {3 \sqrt {2}}{1024}\right )^{5}}{50656005} - \frac {471550901878784 \left (\frac {1}{256} - \frac {3 \sqrt {2}}{1024}\right )^{3}}{2979765} + \frac {8071264001}{202624020} \right )} + \left (\frac {1}{256} + \frac {3 \sqrt {2}}{1024}\right ) \log {\left (x - \frac {471550901878784 \left (\frac {1}{256} + \frac {3 \sqrt {2}}{1024}\right )^{3}}{2979765} + \frac {1299552375287054336 \left (\frac {1}{256} + \frac {3 \sqrt {2}}{1024}\right )^{5}}{50656005} + \frac {8071264001}{202624020} + \frac {8071264001 \sqrt {2}}{270165360} \right )} \]

input
integrate(1/(x**6-7*x**4+7*x**2-1)**2,x)
 
output
(-21*x**5 + 140*x**3 - 103*x)/(128*x**6 - 896*x**4 + 896*x**2 - 128) - 5*l 
og(x - 1)/64 + 5*log(x + 1)/64 + (-1/256 + 3*sqrt(2)/1024)*log(x - 8071264 
001/202624020 - 471550901878784*(-1/256 + 3*sqrt(2)/1024)**3/2979765 + 129 
9552375287054336*(-1/256 + 3*sqrt(2)/1024)**5/50656005 + 8071264001*sqrt(2 
)/270165360) + (-3*sqrt(2)/1024 - 1/256)*log(x - 8071264001*sqrt(2)/270165 
360 - 8071264001/202624020 + 1299552375287054336*(-3*sqrt(2)/1024 - 1/256) 
**5/50656005 - 471550901878784*(-3*sqrt(2)/1024 - 1/256)**3/2979765) + (1/ 
256 - 3*sqrt(2)/1024)*log(x - 8071264001*sqrt(2)/270165360 + 1299552375287 
054336*(1/256 - 3*sqrt(2)/1024)**5/50656005 - 471550901878784*(1/256 - 3*s 
qrt(2)/1024)**3/2979765 + 8071264001/202624020) + (1/256 + 3*sqrt(2)/1024) 
*log(x - 471550901878784*(1/256 + 3*sqrt(2)/1024)**3/2979765 + 12995523752 
87054336*(1/256 + 3*sqrt(2)/1024)**5/50656005 + 8071264001/202624020 + 807 
1264001*sqrt(2)/270165360)
 
3.1.77.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.25 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=-\frac {3}{1024} \, \sqrt {2} \log \left (\frac {x - \sqrt {2} + 1}{x + \sqrt {2} + 1}\right ) - \frac {3}{1024} \, \sqrt {2} \log \left (\frac {x - \sqrt {2} - 1}{x + \sqrt {2} - 1}\right ) - \frac {21 \, x^{5} - 140 \, x^{3} + 103 \, x}{128 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )}} - \frac {1}{256} \, \log \left (x^{2} + 2 \, x - 1\right ) + \frac {1}{256} \, \log \left (x^{2} - 2 \, x - 1\right ) + \frac {5}{64} \, \log \left (x + 1\right ) - \frac {5}{64} \, \log \left (x - 1\right ) \]

input
integrate(1/(x^6-7*x^4+7*x^2-1)^2,x, algorithm="maxima")
 
output
-3/1024*sqrt(2)*log((x - sqrt(2) + 1)/(x + sqrt(2) + 1)) - 3/1024*sqrt(2)* 
log((x - sqrt(2) - 1)/(x + sqrt(2) - 1)) - 1/128*(21*x^5 - 140*x^3 + 103*x 
)/(x^6 - 7*x^4 + 7*x^2 - 1) - 1/256*log(x^2 + 2*x - 1) + 1/256*log(x^2 - 2 
*x - 1) + 5/64*log(x + 1) - 5/64*log(x - 1)
 
3.1.77.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.47 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=-\frac {3}{1024} \, \sqrt {2} \log \left (\frac {{\left | 2 \, x - 2 \, \sqrt {2} + 2 \right |}}{{\left | 2 \, x + 2 \, \sqrt {2} + 2 \right |}}\right ) - \frac {3}{1024} \, \sqrt {2} \log \left (\frac {{\left | 2 \, x - 2 \, \sqrt {2} - 2 \right |}}{{\left | 2 \, x + 2 \, \sqrt {2} - 2 \right |}}\right ) - \frac {21 \, x^{5} - 140 \, x^{3} + 103 \, x}{128 \, {\left (x^{6} - 7 \, x^{4} + 7 \, x^{2} - 1\right )}} - \frac {1}{256} \, \log \left ({\left | x^{2} + 2 \, x - 1 \right |}\right ) + \frac {1}{256} \, \log \left ({\left | x^{2} - 2 \, x - 1 \right |}\right ) + \frac {5}{64} \, \log \left ({\left | x + 1 \right |}\right ) - \frac {5}{64} \, \log \left ({\left | x - 1 \right |}\right ) \]

input
integrate(1/(x^6-7*x^4+7*x^2-1)^2,x, algorithm="giac")
 
output
-3/1024*sqrt(2)*log(abs(2*x - 2*sqrt(2) + 2)/abs(2*x + 2*sqrt(2) + 2)) - 3 
/1024*sqrt(2)*log(abs(2*x - 2*sqrt(2) - 2)/abs(2*x + 2*sqrt(2) - 2)) - 1/1 
28*(21*x^5 - 140*x^3 + 103*x)/(x^6 - 7*x^4 + 7*x^2 - 1) - 1/256*log(abs(x^ 
2 + 2*x - 1)) + 1/256*log(abs(x^2 - 2*x - 1)) + 5/64*log(abs(x + 1)) - 5/6 
4*log(abs(x - 1))
 
3.1.77.9 Mupad [B] (verification not implemented)

Time = 10.08 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.38 \[ \int \frac {1}{\left (-1+7 x^2-7 x^4+x^6\right )^2} \, dx=-\frac {\mathrm {atan}\left (x\,1{}\mathrm {i}\right )\,5{}\mathrm {i}}{32}-\frac {\frac {21\,x^5}{128}-\frac {35\,x^3}{32}+\frac {103\,x}{128}}{x^6-7\,x^4+7\,x^2-1}-\mathrm {atan}\left (\frac {x\,940311{}\mathrm {i}}{134217728\,\left (\frac {275445\,\sqrt {2}}{134217728}-\frac {389421}{134217728}\right )}-\frac {\sqrt {2}\,x\,332433{}\mathrm {i}}{67108864\,\left (\frac {275445\,\sqrt {2}}{134217728}-\frac {389421}{134217728}\right )}\right )\,\left (\frac {\sqrt {2}\,3{}\mathrm {i}}{512}-\frac {1}{128}{}\mathrm {i}\right )-\mathrm {atan}\left (\frac {x\,940311{}\mathrm {i}}{134217728\,\left (\frac {275445\,\sqrt {2}}{134217728}+\frac {389421}{134217728}\right )}+\frac {\sqrt {2}\,x\,332433{}\mathrm {i}}{67108864\,\left (\frac {275445\,\sqrt {2}}{134217728}+\frac {389421}{134217728}\right )}\right )\,\left (\frac {\sqrt {2}\,3{}\mathrm {i}}{512}+\frac {1}{128}{}\mathrm {i}\right ) \]

input
int(1/(7*x^2 - 7*x^4 + x^6 - 1)^2,x)
 
output
- (atan(x*1i)*5i)/32 - ((103*x)/128 - (35*x^3)/32 + (21*x^5)/128)/(7*x^2 - 
 7*x^4 + x^6 - 1) - atan((x*940311i)/(134217728*((275445*2^(1/2))/13421772 
8 - 389421/134217728)) - (2^(1/2)*x*332433i)/(67108864*((275445*2^(1/2))/1 
34217728 - 389421/134217728)))*((2^(1/2)*3i)/512 - 1i/128) - atan((x*94031 
1i)/(134217728*((275445*2^(1/2))/134217728 + 389421/134217728)) + (2^(1/2) 
*x*332433i)/(67108864*((275445*2^(1/2))/134217728 + 389421/134217728)))*(( 
2^(1/2)*3i)/512 + 1i/128)