3.11.2 \(\int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx\) [1002]

3.11.2.1 Optimal result
3.11.2.2 Mathematica [C] (verified)
3.11.2.3 Rubi [A] (verified)
3.11.2.4 Maple [C] (verified)
3.11.2.5 Fricas [F]
3.11.2.6 Sympy [F]
3.11.2.7 Maxima [F]
3.11.2.8 Giac [F]
3.11.2.9 Mupad [F(-1)]

3.11.2.1 Optimal result

Integrand size = 51, antiderivative size = 184 \[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {b} d^2 \left (\frac {c}{d}+x\right )^2}{\sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}}\right )}{2 \sqrt {b} d^2}-\frac {c \left (\sqrt {a}+\sqrt {b} d^2 \left (\frac {c}{d}+x\right )^2\right ) \sqrt {\frac {a+b d^4 \left (\frac {c}{d}+x\right )^4}{\left (\sqrt {a}+\sqrt {b} d^2 \left (\frac {c}{d}+x\right )^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d^2 \sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}} \]

output
1/2*arctanh(d^2*(c/d+x)^2*b^(1/2)/(a+b*d^4*(c/d+x)^4)^(1/2))/d^2/b^(1/2)-1 
/2*c*(cos(2*arctan(b^(1/4)*(d*x+c)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4) 
*(d*x+c)/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*(d*x+c)/a^(1/4))),1/2*2^ 
(1/2))*(a^(1/2)+d^2*(c/d+x)^2*b^(1/2))*((a+b*d^4*(c/d+x)^4)/(a^(1/2)+d^2*( 
c/d+x)^2*b^(1/2))^2)^(1/2)/a^(1/4)/b^(1/4)/d^2/(a+b*d^4*(c/d+x)^4)^(1/2)
 
3.11.2.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.36 (sec) , antiderivative size = 389, normalized size of antiderivative = 2.11 \[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\frac {\sqrt [4]{-1} \left (\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)\right )^2 \sqrt {\frac {(1-i) \left ((-1)^{3/4} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}} \sqrt {-\frac {i \left (\sqrt [4]{-1} \sqrt [4]{a}+\sqrt [4]{b} (c+d x)\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}} \sqrt {-\frac {(1+i) \left ((-1)^{3/4} \sqrt [4]{a}+\sqrt [4]{b} (c+d x)\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}} \left (\left (\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} c\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {-\frac {i \left (\sqrt [4]{-1} \sqrt [4]{a}+\sqrt [4]{b} (c+d x)\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}}\right ),-1\right )-2 \sqrt [4]{-1} \sqrt [4]{a} \operatorname {EllipticPi}\left (-i,\arcsin \left (\sqrt {-\frac {i \left (\sqrt [4]{-1} \sqrt [4]{a}+\sqrt [4]{b} (c+d x)\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}}\right ),-1\right )\right )}{\sqrt [4]{a} \sqrt {b} d^2 \sqrt {a+b (c+d x)^4}} \]

input
Integrate[x/Sqrt[a + b*c^4 + 4*b*c^3*d*x + 6*b*c^2*d^2*x^2 + 4*b*c*d^3*x^3 
 + b*d^4*x^4],x]
 
output
((-1)^(1/4)*((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))^2*Sqrt[((1 - I)*((-1) 
^(3/4)*a^(1/4) - b^(1/4)*(c + d*x)))/((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d* 
x))]*Sqrt[((-I)*((-1)^(1/4)*a^(1/4) + b^(1/4)*(c + d*x)))/((-1)^(1/4)*a^(1 
/4) - b^(1/4)*(c + d*x))]*Sqrt[((-1 - I)*((-1)^(3/4)*a^(1/4) + b^(1/4)*(c 
+ d*x)))/((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))]*(((-1)^(1/4)*a^(1/4) - 
b^(1/4)*c)*EllipticF[ArcSin[Sqrt[((-I)*((-1)^(1/4)*a^(1/4) + b^(1/4)*(c + 
d*x)))/((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))]], -1] - 2*(-1)^(1/4)*a^(1 
/4)*EllipticPi[-I, ArcSin[Sqrt[((-I)*((-1)^(1/4)*a^(1/4) + b^(1/4)*(c + d* 
x)))/((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))]], -1]))/(a^(1/4)*Sqrt[b]*d^ 
2*Sqrt[a + b*(c + d*x)^4])
 
3.11.2.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2459, 2424, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx\)

\(\Big \downarrow \) 2459

\(\displaystyle \int \frac {x}{\sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}}d\left (\frac {c}{d}+x\right )\)

\(\Big \downarrow \) 2424

\(\displaystyle \int \left (\frac {\frac {c}{d}+x}{\sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}}-\frac {c}{d \sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}}\right )d\left (\frac {c}{d}+x\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {b} d^2 \left (\frac {c}{d}+x\right )^2}{\sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}}\right )}{2 \sqrt {b} d^2}-\frac {c \left (\sqrt {a}+\sqrt {b} d^2 \left (\frac {c}{d}+x\right )^2\right ) \sqrt {\frac {a+b d^4 \left (\frac {c}{d}+x\right )^4}{\left (\sqrt {a}+\sqrt {b} d^2 \left (\frac {c}{d}+x\right )^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} d \left (\frac {c}{d}+x\right )}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d^2 \sqrt {a+b d^4 \left (\frac {c}{d}+x\right )^4}}\)

input
Int[x/Sqrt[a + b*c^4 + 4*b*c^3*d*x + 6*b*c^2*d^2*x^2 + 4*b*c*d^3*x^3 + b*d 
^4*x^4],x]
 
output
ArcTanh[(Sqrt[b]*d^2*(c/d + x)^2)/Sqrt[a + b*d^4*(c/d + x)^4]]/(2*Sqrt[b]* 
d^2) - (c*(Sqrt[a] + Sqrt[b]*d^2*(c/d + x)^2)*Sqrt[(a + b*d^4*(c/d + x)^4) 
/(Sqrt[a] + Sqrt[b]*d^2*(c/d + x)^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*d*(c/d 
 + x))/a^(1/4)], 1/2])/(2*a^(1/4)*b^(1/4)*d^2*Sqrt[a + b*d^4*(c/d + x)^4])
 

3.11.2.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2424
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, 
 x], j, k}, Int[Sum[x^j*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2 
*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, p}, 
 x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]
 

rule 2459
Int[(Pn_)^(p_.)*(Qx_), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1 
]/(Expon[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x 
 -> x - S, x]^p*ExpandToSum[Qx /. x -> x - S, x], x], x, x + S] /; Binomial 
Q[Pn /. x -> x - S, x] || (IntegerQ[Expon[Pn, x]/2] && TrinomialQ[Pn /. x - 
> x - S, x])] /; FreeQ[p, x] && PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2] && NeQ 
[Coeff[Pn, x, Expon[Pn, x] - 1], 0] && PolyQ[Qx, x] &&  !(MonomialQ[Qx, x] 
&& IGtQ[p, 0])
 
3.11.2.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 4.99 (sec) , antiderivative size = 1528, normalized size of antiderivative = 8.30

method result size
default \(\text {Expression too large to display}\) \(1528\)
elliptic \(\text {Expression too large to display}\) \(1528\)

input
int(x/(b*d^4*x^4+4*b*c*d^3*x^3+6*b*c^2*d^2*x^2+4*b*c^3*d*x+b*c^4+a)^(1/2), 
x,method=_RETURNVERBOSE)
 
output
2*(-(-I/b*(-a*b^3)^(1/4)-c)/d+(1/b*(-a*b^3)^(1/4)-c)/d)*(((-I/b*(-a*b^3)^( 
1/4)-c)/d-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(- 
a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^ 
(1/2)*(x-(I/b*(-a*b^3)^(1/4)-c)/d)^2*(((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b 
^3)^(1/4)-c)/d)*(x-(-1/b*(-a*b^3)^(1/4)-c)/d)/((-1/b*(-a*b^3)^(1/4)-c)/d-( 
1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)*(((I/b*(-a*b^ 
3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)*(x-(-I/b*(-a*b^3)^(1/4)-c)/d)/((-I 
/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c) 
/d))^(1/2)/((-I/b*(-a*b^3)^(1/4)-c)/d-(I/b*(-a*b^3)^(1/4)-c)/d)/((I/b*(-a* 
b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(b*d^4*(x-(1/b*(-a*b^3)^(1/4)-c) 
/d)*(x-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(-1/b*(-a*b^3)^(1/4)-c)/d)*(x-(-I/b*(- 
a*b^3)^(1/4)-c)/d))^(1/2)*((I/b*(-a*b^3)^(1/4)-c)/d*EllipticF((((-I/b*(-a* 
b^3)^(1/4)-c)/d-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((- 
I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c 
)/d))^(1/2),(((I/b*(-a*b^3)^(1/4)-c)/d-(-1/b*(-a*b^3)^(1/4)-c)/d)*(-(-I/b* 
(-a*b^3)^(1/4)-c)/d+(1/b*(-a*b^3)^(1/4)-c)/d)/((1/b*(-a*b^3)^(1/4)-c)/d-(- 
1/b*(-a*b^3)^(1/4)-c)/d)/((I/b*(-a*b^3)^(1/4)-c)/d-(-I/b*(-a*b^3)^(1/4)-c) 
/d))^(1/2))+(-(I/b*(-a*b^3)^(1/4)-c)/d+(1/b*(-a*b^3)^(1/4)-c)/d)*EllipticP 
i((((-I/b*(-a*b^3)^(1/4)-c)/d-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^( 
1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b...
 
3.11.2.5 Fricas [F]

\[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\int { \frac {x}{\sqrt {b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}} \,d x } \]

input
integrate(x/(b*d^4*x^4+4*b*c*d^3*x^3+6*b*c^2*d^2*x^2+4*b*c^3*d*x+b*c^4+a)^ 
(1/2),x, algorithm="fricas")
 
output
integral(x/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x 
+ b*c^4 + a), x)
 
3.11.2.6 Sympy [F]

\[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\int \frac {x}{\sqrt {a + b c^{4} + 4 b c^{3} d x + 6 b c^{2} d^{2} x^{2} + 4 b c d^{3} x^{3} + b d^{4} x^{4}}}\, dx \]

input
integrate(x/(b*d**4*x**4+4*b*c*d**3*x**3+6*b*c**2*d**2*x**2+4*b*c**3*d*x+b 
*c**4+a)**(1/2),x)
 
output
Integral(x/sqrt(a + b*c**4 + 4*b*c**3*d*x + 6*b*c**2*d**2*x**2 + 4*b*c*d** 
3*x**3 + b*d**4*x**4), x)
 
3.11.2.7 Maxima [F]

\[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\int { \frac {x}{\sqrt {b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}} \,d x } \]

input
integrate(x/(b*d^4*x^4+4*b*c*d^3*x^3+6*b*c^2*d^2*x^2+4*b*c^3*d*x+b*c^4+a)^ 
(1/2),x, algorithm="maxima")
 
output
integrate(x/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x 
 + b*c^4 + a), x)
 
3.11.2.8 Giac [F]

\[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\int { \frac {x}{\sqrt {b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}} \,d x } \]

input
integrate(x/(b*d^4*x^4+4*b*c*d^3*x^3+6*b*c^2*d^2*x^2+4*b*c^3*d*x+b*c^4+a)^ 
(1/2),x, algorithm="giac")
 
output
integrate(x/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x 
 + b*c^4 + a), x)
 
3.11.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {a+b c^4+4 b c^3 d x+6 b c^2 d^2 x^2+4 b c d^3 x^3+b d^4 x^4}} \, dx=\int \frac {x}{\sqrt {b\,c^4+4\,b\,c^3\,d\,x+6\,b\,c^2\,d^2\,x^2+4\,b\,c\,d^3\,x^3+b\,d^4\,x^4+a}} \,d x \]

input
int(x/(a + b*c^4 + b*d^4*x^4 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + 4*b*c*d^3*x 
^3)^(1/2),x)
 
output
int(x/(a + b*c^4 + b*d^4*x^4 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + 4*b*c*d^3*x 
^3)^(1/2), x)