3.1.85 \(\int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx\) [85]

3.1.85.1 Optimal result
3.1.85.2 Mathematica [C] (warning: unable to verify)
3.1.85.3 Rubi [A] (verified)
3.1.85.4 Maple [A] (verified)
3.1.85.5 Fricas [C] (verification not implemented)
3.1.85.6 Sympy [F]
3.1.85.7 Maxima [F]
3.1.85.8 Giac [F]
3.1.85.9 Mupad [B] (verification not implemented)

3.1.85.1 Optimal result

Integrand size = 20, antiderivative size = 156 \[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=-\frac {2}{9} (e-2 f) \arctan \left (\frac {(1-x)^2}{3 \sqrt {-1+x^3}}\right )-\frac {2 \sqrt {2-\sqrt {3}} (e+f) (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \]

output
-2/9*(e-2*f)*arctan(1/3*(1-x)^2/(x^3-1)^(1/2))-2/9*(e+f)*(1-x)*EllipticF(( 
1-x+3^(1/2))/(1-x-3^(1/2)),2*I-I*3^(1/2))*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2+ 
x+1)/(1-x-3^(1/2))^2)^(1/2)*3^(3/4)/(x^3-1)^(1/2)/((-1+x)/(1-x-3^(1/2))^2) 
^(1/2)
 
3.1.85.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 20.22 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.72 \[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=\frac {2 \sqrt {\frac {2}{3}} \sqrt {\frac {i (-1+x)}{-3 i+\sqrt {3}}} \left (3 f \sqrt {i+\sqrt {3}+2 i x} \left (-1+i \sqrt {3}+x+i \sqrt {3} x\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {-i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )-2 \sqrt {3} (e-2 f) \sqrt {-i+\sqrt {3}-2 i x} \sqrt {1+x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{3 i+\sqrt {3}},\arcsin \left (\frac {\sqrt {-i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )\right )}{\left (3 i+\sqrt {3}\right ) \sqrt {-i+\sqrt {3}-2 i x} \sqrt {-1+x^3}} \]

input
Integrate[(e + f*x)/((2 + x)*Sqrt[-1 + x^3]),x]
 
output
(2*Sqrt[2/3]*Sqrt[(I*(-1 + x))/(-3*I + Sqrt[3])]*(3*f*Sqrt[I + Sqrt[3] + ( 
2*I)*x]*(-1 + I*Sqrt[3] + x + I*Sqrt[3]*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt 
[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])] - 2*Sqrt[ 
3]*(e - 2*f)*Sqrt[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[(2* 
Sqrt[3])/(3*I + Sqrt[3]), ArcSin[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^( 
1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((3*I + Sqrt[3])*Sqrt[-I + Sqrt[3] 
 - (2*I)*x]*Sqrt[-1 + x^3])
 
3.1.85.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2564, 27, 760, 2563, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e+f x}{(x+2) \sqrt {x^3-1}} \, dx\)

\(\Big \downarrow \) 2564

\(\displaystyle \frac {1}{3} (e+f) \int \frac {1}{\sqrt {x^3-1}}dx+\frac {1}{6} (e-2 f) \int \frac {2 (1-x)}{(x+2) \sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} (e+f) \int \frac {1}{\sqrt {x^3-1}}dx+\frac {1}{3} (e-2 f) \int \frac {1-x}{(x+2) \sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {1}{3} (e-2 f) \int \frac {1-x}{(x+2) \sqrt {x^3-1}}dx-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} (e+f) \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 2563

\(\displaystyle -\frac {2}{3} (e-2 f) \int \frac {1}{\frac {(1-x)^4}{x^3-1}+9}d\frac {(1-x)^2}{\sqrt {x^3-1}}-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} (e+f) \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} (e+f) \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}-\frac {2}{9} \arctan \left (\frac {(1-x)^2}{3 \sqrt {x^3-1}}\right ) (e-2 f)\)

input
Int[(e + f*x)/((2 + x)*Sqrt[-1 + x^3]),x]
 
output
(-2*(e - 2*f)*ArcTan[(1 - x)^2/(3*Sqrt[-1 + x^3])])/9 - (2*Sqrt[2 - Sqrt[3 
]]*(e + f)*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSi 
n[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[- 
((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])
 

3.1.85.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 2563
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> Simp[-2*(e/d)   Subst[Int[1/(9 - a*x^2), x], x, (1 + f*(x/e))^2/ 
Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] & 
& EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]
 

rule 2564
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x 
_Symbol] :> Simp[(2*d*e + c*f)/(3*c*d)   Int[1/Sqrt[a + b*x^3], x], x] + Si 
mp[(d*e - c*f)/(3*c*d)   Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a* 
d^3, 0] || EqQ[b*c^3 + 8*a*d^3, 0]) && NeQ[2*d*e + c*f, 0]
 
3.1.85.4 Maple [A] (verified)

Time = 0.94 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.58

method result size
default \(\frac {2 f \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 \left (e -2 f \right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {1}{2}+\frac {i \sqrt {3}}{6}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}-1}}\) \(246\)
elliptic \(\frac {2 f \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 \left (e -2 f \right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {1}{2}+\frac {i \sqrt {3}}{6}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}-1}}\) \(246\)

input
int((f*x+e)/(x+2)/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 
output
2*f*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I* 
3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1 
/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3 
/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))+2/3*(e-2*f)*(-3/2-1/2*I*3^(1 
/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I* 
3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^ 
(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/2+1/6*I*3^(1/2),((3/ 
2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))
 
3.1.85.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.35 \[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=-\frac {1}{9} \, {\left (e - 2 \, f\right )} \arctan \left (\frac {{\left (x^{3} - 12 \, x^{2} - 6 \, x - 10\right )} \sqrt {x^{3} - 1}}{6 \, {\left (x^{4} - x^{3} - x + 1\right )}}\right ) + \frac {2}{3} \, {\left (e + f\right )} {\rm weierstrassPInverse}\left (0, 4, x\right ) \]

input
integrate((f*x+e)/(2+x)/(x^3-1)^(1/2),x, algorithm="fricas")
 
output
-1/9*(e - 2*f)*arctan(1/6*(x^3 - 12*x^2 - 6*x - 10)*sqrt(x^3 - 1)/(x^4 - x 
^3 - x + 1)) + 2/3*(e + f)*weierstrassPInverse(0, 4, x)
 
3.1.85.6 Sympy [F]

\[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=\int \frac {e + f x}{\sqrt {\left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x + 2\right )}\, dx \]

input
integrate((f*x+e)/(2+x)/(x**3-1)**(1/2),x)
 
output
Integral((e + f*x)/(sqrt((x - 1)*(x**2 + x + 1))*(x + 2)), x)
 
3.1.85.7 Maxima [F]

\[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=\int { \frac {f x + e}{\sqrt {x^{3} - 1} {\left (x + 2\right )}} \,d x } \]

input
integrate((f*x+e)/(2+x)/(x^3-1)^(1/2),x, algorithm="maxima")
 
output
integrate((f*x + e)/(sqrt(x^3 - 1)*(x + 2)), x)
 
3.1.85.8 Giac [F]

\[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=\int { \frac {f x + e}{\sqrt {x^{3} - 1} {\left (x + 2\right )}} \,d x } \]

input
integrate((f*x+e)/(2+x)/(x^3-1)^(1/2),x, algorithm="giac")
 
output
integrate((f*x + e)/(sqrt(x^3 - 1)*(x + 2)), x)
 
3.1.85.9 Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 327, normalized size of antiderivative = 2.10 \[ \int \frac {e+f x}{(2+x) \sqrt {-1+x^3}} \, dx=-\frac {2\,f\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (e-2\,f\right )\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int((e + f*x)/((x^3 - 1)^(1/2)*(x + 2)),x)
 
output
- (2*f*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 
 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*( 
-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)* 
1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((( 
3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*(( 
3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2) - (2*((3^(1/2)*1i)/2 + 3/2)*(-(x - 
(3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 
 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(e - 2*f)*(-(x - 1)/((3^(1/2)*1i)/2 + 
3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/6 + 1/2, asin((-(x - 1)/((3^(1/2)*1i)/ 
2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(3*(((3 
^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3 
^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))