3.2.25 \(\int \frac {1+x}{(1+\sqrt {3}+x) \sqrt {1+x^3}} \, dx\) [125]

3.2.25.1 Optimal result
3.2.25.2 Mathematica [C] (warning: unable to verify)
3.2.25.3 Rubi [A] (verified)
3.2.25.4 Maple [B] (verified)
3.2.25.5 Fricas [C] (verification not implemented)
3.2.25.6 Sympy [F]
3.2.25.7 Maxima [F]
3.2.25.8 Giac [F]
3.2.25.9 Mupad [F(-1)]

3.2.25.1 Optimal result

Integrand size = 23, antiderivative size = 145 \[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=-\frac {\arctan \left (\frac {\sqrt {3+2 \sqrt {3}} (1+x)}{\sqrt {1+x^3}}\right )}{\sqrt {3+2 \sqrt {3}}}+\frac {\sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

output
1/3*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2 
)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1 
+x)/(1+x+3^(1/2))^2)^(1/2)-arctan((1+x)*(3+2*3^(1/2))^(1/2)/(x^3+1)^(1/2)) 
/(3+2*3^(1/2))^(1/2)
 
3.2.25.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 20.39 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.86 \[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {2 \sqrt {6} \sqrt {\frac {i (1+x)}{3 i+\sqrt {3}}} \left (\sqrt {-i+\sqrt {3}+2 i x} \left ((-2-i)-\sqrt {3}+\left ((1+2 i)+i \sqrt {3}\right ) x\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )+2 \sqrt {i+\sqrt {3}-2 i x} \sqrt {1-x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{3 i+(1+2 i) \sqrt {3}},\arcsin \left (\frac {\sqrt {i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )\right )}{\left (3 i+(1+2 i) \sqrt {3}\right ) \sqrt {i+\sqrt {3}-2 i x} \sqrt {1+x^3}} \]

input
Integrate[(1 + x)/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]
 
output
(2*Sqrt[6]*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*(Sqrt[-I + Sqrt[3] + (2*I)*x] 
*((-2 - I) - Sqrt[3] + ((1 + 2*I) + I*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[I 
+ Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])] + 2* 
Sqrt[I + Sqrt[3] - (2*I)*x]*Sqrt[1 - x + x^2]*EllipticPi[(2*Sqrt[3])/(3*I 
+ (1 + 2*I)*Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4)) 
], (2*Sqrt[3])/(3*I + Sqrt[3])]))/((3*I + (1 + 2*I)*Sqrt[3])*Sqrt[I + Sqrt 
[3] - (2*I)*x]*Sqrt[1 + x^3])
 
3.2.25.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2566, 27, 759, 2565, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x+1}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2566

\(\displaystyle \frac {1}{2} \int \frac {1}{\sqrt {x^3+1}}dx+\frac {1}{12} \int \frac {6 \left (x-\sqrt {3}+1\right )}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {1}{\sqrt {x^3+1}}dx+\frac {1}{2} \int \frac {x-\sqrt {3}+1}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}}dx\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {1}{2} \int \frac {x-\sqrt {3}+1}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}}dx+\frac {\sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2565

\(\displaystyle \frac {\sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\int \frac {1}{\frac {\left (3+2 \sqrt {3}\right ) (x+1)^2}{x^3+1}+1}d\frac {x+1}{\sqrt {x^3+1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\arctan \left (\frac {\sqrt {3+2 \sqrt {3}} (x+1)}{\sqrt {x^3+1}}\right )}{\sqrt {3+2 \sqrt {3}}}\)

input
Int[(1 + x)/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]
 
output
-(ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]]/Sqrt[3 + 2*Sqrt[3]]) 
 + (Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Elli 
pticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/ 
4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])
 

3.2.25.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2565
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> With[{k = Simplify[(d*e + 2*c*f)/(c*f)]}, Simp[(1 + k)*(e/d)   S 
ubst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a + b*x 
^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c 
^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^ 
3), 0]
 

rule 2566
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x 
_Symbol] :> Simp[-(6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d 
^3))   Int[1/Sqrt[a + b*x^3], x], x] + Simp[(d*e - c*f)/(c*d*(b*c^3 - 28*a* 
d^3))   Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 
 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3) 
, 0]
 
3.2.25.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 244 vs. \(2 (119 ) = 238\).

Time = 2.43 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.69

method result size
default \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}-\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}\) \(245\)
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}-\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}\) \(245\)

input
int((x+1)/(1+x+3^(1/2))/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1 
/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2 
)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2 
+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))-2*(3/2-1/2*I*3^(1/2))*((x+1)/ 
(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1 
/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*Ellip 
ticPi(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),( 
(-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))
 
3.2.25.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.38 \[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {1}{6} \, \sqrt {3} \sqrt {2 \, \sqrt {3} - 3} \arctan \left (\frac {{\left (\sqrt {3} {\left (x^{2} - 4 \, x - 2\right )} - 6 \, x - 6\right )} \sqrt {2 \, \sqrt {3} - 3}}{6 \, \sqrt {x^{3} + 1}}\right ) + {\rm weierstrassPInverse}\left (0, -4, x\right ) \]

input
integrate((1+x)/(1+x+3^(1/2))/(x^3+1)^(1/2),x, algorithm="fricas")
 
output
1/6*sqrt(3)*sqrt(2*sqrt(3) - 3)*arctan(1/6*(sqrt(3)*(x^2 - 4*x - 2) - 6*x 
- 6)*sqrt(2*sqrt(3) - 3)/sqrt(x^3 + 1)) + weierstrassPInverse(0, -4, x)
 
3.2.25.6 Sympy [F]

\[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int \frac {x + 1}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 1 + \sqrt {3}\right )}\, dx \]

input
integrate((1+x)/(1+x+3**(1/2))/(x**3+1)**(1/2),x)
 
output
Integral((x + 1)/(sqrt((x + 1)*(x**2 - x + 1))*(x + 1 + sqrt(3))), x)
 
3.2.25.7 Maxima [F]

\[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {x + 1}{\sqrt {x^{3} + 1} {\left (x + \sqrt {3} + 1\right )}} \,d x } \]

input
integrate((1+x)/(1+x+3^(1/2))/(x^3+1)^(1/2),x, algorithm="maxima")
 
output
integrate((x + 1)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)
 
3.2.25.8 Giac [F]

\[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {x + 1}{\sqrt {x^{3} + 1} {\left (x + \sqrt {3} + 1\right )}} \,d x } \]

input
integrate((1+x)/(1+x+3^(1/2))/(x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate((x + 1)/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)
 
3.2.25.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1+x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\text {Hanged} \]

input
int((x + 1)/((x^3 + 1)^(1/2)*(x + 3^(1/2) + 1)),x)
 
output
\text{Hanged}