3.2.53 \(\int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx\) [153]

3.2.53.1 Optimal result
3.2.53.2 Mathematica [C] (verified)
3.2.53.3 Rubi [A] (verified)
3.2.53.4 Maple [C] (verified)
3.2.53.5 Fricas [C] (verification not implemented)
3.2.53.6 Sympy [A] (verification not implemented)
3.2.53.7 Maxima [F]
3.2.53.8 Giac [F]
3.2.53.9 Mupad [B] (verification not implemented)

3.2.53.1 Optimal result

Integrand size = 25, antiderivative size = 139 \[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=-\frac {2}{3} \left (1+\sqrt {3}\right ) \text {arctanh}\left (\sqrt {1-x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \]

output
-2/3*arctanh((-x^3+1)^(1/2))*(1+3^(1/2))+2/3*(1-x)*EllipticF((1-x-3^(1/2)) 
/(1-x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2+x+1)/(1-x+3^ 
(1/2))^2)^(1/2)*3^(3/4)/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)
 
3.2.53.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.29 \[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=-\frac {2}{3} \left (1+\sqrt {3}\right ) \text {arctanh}\left (\sqrt {1-x^3}\right )-x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right ) \]

input
Integrate[(1 + Sqrt[3] - x)/(x*Sqrt[1 - x^3]),x]
 
output
(-2*(1 + Sqrt[3])*ArcTanh[Sqrt[1 - x^3]])/3 - x*Hypergeometric2F1[1/3, 1/2 
, 4/3, x^3]
 
3.2.53.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2371, 25, 759, 798, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-x+\sqrt {3}+1}{x \sqrt {1-x^3}} \, dx\)

\(\Big \downarrow \) 2371

\(\displaystyle \int -\frac {1}{\sqrt {1-x^3}}dx+\left (1+\sqrt {3}\right ) \int \frac {1}{x \sqrt {1-x^3}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \left (1+\sqrt {3}\right ) \int \frac {1}{x \sqrt {1-x^3}}dx-\int \frac {1}{\sqrt {1-x^3}}dx\)

\(\Big \downarrow \) 759

\(\displaystyle \left (1+\sqrt {3}\right ) \int \frac {1}{x \sqrt {1-x^3}}dx+\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{3} \left (1+\sqrt {3}\right ) \int \frac {1}{x^3 \sqrt {1-x^3}}dx^3+\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2}{3} \left (1+\sqrt {3}\right ) \int \frac {1}{1-x^6}d\sqrt {1-x^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2}{3} \left (1+\sqrt {3}\right ) \text {arctanh}\left (\sqrt {1-x^3}\right )\)

input
Int[(1 + Sqrt[3] - x)/(x*Sqrt[1 - x^3]),x]
 
output
(-2*(1 + Sqrt[3])*ArcTanh[Sqrt[1 - x^3]])/3 + (2*Sqrt[2 + Sqrt[3]]*(1 - x) 
*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x 
)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 - x)/(1 + Sqrt[3] 
- x)^2]*Sqrt[1 - x^3])
 

3.2.53.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2371
Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[Coeff[Pq, 
x, 0]   Int[1/(x*Sqrt[a + b*x^n]), x], x] + Int[ExpandToSum[(Pq - Coeff[Pq, 
 x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IG 
tQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]
 
3.2.53.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 1.35 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.73

method result size
meijerg \(\frac {-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }}{3 \sqrt {\pi }}-x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};x^{3}\right )+\frac {\sqrt {3}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }\right )}{3 \sqrt {\pi }}\) \(101\)
default \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}-\frac {2 \,\operatorname {arctanh}\left (\sqrt {-x^{3}+1}\right ) \left (1+\sqrt {3}\right )}{3}\) \(125\)
elliptic \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}-\frac {2 \,\operatorname {arctanh}\left (\sqrt {-x^{3}+1}\right ) \left (1+\sqrt {3}\right )}{3}\) \(125\)

input
int((1-x+3^(1/2))/x/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/3/Pi^(1/2)*(-2*Pi^(1/2)*ln(1/2+1/2*(-x^3+1)^(1/2))+(-2*ln(2)+3*ln(x)+I*P 
i)*Pi^(1/2))-x*hypergeom([1/3,1/2],[4/3],x^3)+1/3*3^(1/2)/Pi^(1/2)*(-2*Pi^ 
(1/2)*ln(1/2+1/2*(-x^3+1)^(1/2))+(-2*ln(2)+3*ln(x)+I*Pi)*Pi^(1/2))
 
3.2.53.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.26 \[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=\frac {1}{3} \, {\left (\sqrt {3} + 1\right )} \log \left (-\frac {x^{3} + 2 \, \sqrt {-x^{3} + 1} - 2}{x^{3}}\right ) + 2 i \, {\rm weierstrassPInverse}\left (0, 4, x\right ) \]

input
integrate((1-x+3^(1/2))/x/(-x^3+1)^(1/2),x, algorithm="fricas")
 
output
1/3*(sqrt(3) + 1)*log(-(x^3 + 2*sqrt(-x^3 + 1) - 2)/x^3) + 2*I*weierstrass 
PInverse(0, 4, x)
 
3.2.53.6 Sympy [A] (verification not implemented)

Time = 3.74 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.71 \[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=- \frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} + \begin {cases} - \frac {2 \operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\\frac {2 i \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {otherwise} \end {cases} + \sqrt {3} \left (\begin {cases} - \frac {2 \operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\\frac {2 i \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {otherwise} \end {cases}\right ) \]

input
integrate((1-x+3**(1/2))/x/(-x**3+1)**(1/2),x)
 
output
-x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(2*I*pi))/(3*gamma(4 
/3)) + Piecewise((-2*acosh(x**(-3/2))/3, 1/Abs(x**3) > 1), (2*I*asin(x**(- 
3/2))/3, True)) + sqrt(3)*Piecewise((-2*acosh(x**(-3/2))/3, 1/Abs(x**3) > 
1), (2*I*asin(x**(-3/2))/3, True))
 
3.2.53.7 Maxima [F]

\[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=\int { -\frac {x - \sqrt {3} - 1}{\sqrt {-x^{3} + 1} x} \,d x } \]

input
integrate((1-x+3^(1/2))/x/(-x^3+1)^(1/2),x, algorithm="maxima")
 
output
-integrate((x - sqrt(3) - 1)/(sqrt(-x^3 + 1)*x), x)
 
3.2.53.8 Giac [F]

\[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=\int { -\frac {x - \sqrt {3} - 1}{\sqrt {-x^{3} + 1} x} \,d x } \]

input
integrate((1-x+3^(1/2))/x/(-x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate(-(x - sqrt(3) - 1)/(sqrt(-x^3 + 1)*x), x)
 
3.2.53.9 Mupad [B] (verification not implemented)

Time = 18.95 (sec) , antiderivative size = 373, normalized size of antiderivative = 2.68 \[ \int \frac {1+\sqrt {3}-x}{x \sqrt {1-x^3}} \, dx=\frac {\sqrt {3}\,\ln \left (\frac {{\left (\sqrt {1-x^3}-1\right )}^3\,\left (\sqrt {1-x^3}+1\right )}{x^6}\right )}{3}+\frac {\sqrt {x^3-1}\,\left (\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\right )}{\sqrt {1-x^3}} \]

input
int((3^(1/2) - x + 1)/(x*(1 - x^3)^(1/2)),x)
 
output
(3^(1/2)*log((((1 - x^3)^(1/2) - 1)^3*((1 - x^3)^(1/2) + 1))/x^6))/3 + ((x 
^3 - 1)^(1/2)*((2*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^ 
(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/ 
2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1) 
/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 
 3/2)))/(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/ 
2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2) - (2*((3^(1/2)*1i)/2 + 3 
/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1 
/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 
 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/2 + 3/2, asin((-(x - 1)/((3^(1/2)*1i) 
/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(((3^( 
1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^( 
1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)))/(1 - x^3)^(1/2)