3.2.56 \(\int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx\) [156]

3.2.56.1 Optimal result
3.2.56.2 Mathematica [C] (verified)
3.2.56.3 Rubi [A] (verified)
3.2.56.4 Maple [C] (verified)
3.2.56.5 Fricas [C] (verification not implemented)
3.2.56.6 Sympy [A] (verification not implemented)
3.2.56.7 Maxima [F]
3.2.56.8 Giac [F]
3.2.56.9 Mupad [B] (verification not implemented)

3.2.56.1 Optimal result

Integrand size = 23, antiderivative size = 127 \[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=-\frac {2}{3} \left (1-\sqrt {3}\right ) \text {arctanh}\left (\sqrt {1+x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

output
-2/3*arctanh((x^3+1)^(1/2))*(1-3^(1/2))+2/3*(1+x)*EllipticF((1+x-3^(1/2))/ 
(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^( 
1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)
 
3.2.56.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.32 \[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=-\frac {2}{3} \left (1-\sqrt {3}\right ) \text {arctanh}\left (\sqrt {1+x^3}\right )+x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-x^3\right ) \]

input
Integrate[(1 - Sqrt[3] + x)/(x*Sqrt[1 + x^3]),x]
 
output
(-2*(1 - Sqrt[3])*ArcTanh[Sqrt[1 + x^3]])/3 + x*Hypergeometric2F1[1/3, 1/2 
, 4/3, -x^3]
 
3.2.56.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2371, 759, 798, 73, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x-\sqrt {3}+1}{x \sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2371

\(\displaystyle \int \frac {1}{\sqrt {x^3+1}}dx+\left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {x^3+1}}dx\)

\(\Big \downarrow \) 759

\(\displaystyle \left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {x^3+1}}dx+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{3} \left (1-\sqrt {3}\right ) \int \frac {1}{x^3 \sqrt {x^3+1}}dx^3+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2}{3} \left (1-\sqrt {3}\right ) \int \frac {1}{x^6-1}d\sqrt {x^3+1}+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2}{3} \left (1-\sqrt {3}\right ) \text {arctanh}\left (\sqrt {x^3+1}\right )\)

input
Int[(1 - Sqrt[3] + x)/(x*Sqrt[1 + x^3]),x]
 
output
(-2*(1 - Sqrt[3])*ArcTanh[Sqrt[1 + x^3]])/3 + (2*Sqrt[2 + Sqrt[3]]*(1 + x) 
*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x 
)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] 
+ x)^2]*Sqrt[1 + x^3])
 

3.2.56.3.1 Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2371
Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[Coeff[Pq, 
x, 0]   Int[1/(x*Sqrt[a + b*x^n]), x], x] + Int[ExpandToSum[(Pq - Coeff[Pq, 
 x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IG 
tQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]
 
3.2.56.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 1.07 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.71

method result size
meijerg \(\frac {-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )\right ) \sqrt {\pi }}{3 \sqrt {\pi }}+x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^{3}\right )-\frac {\sqrt {3}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )\right ) \sqrt {\pi }\right )}{3 \sqrt {\pi }}\) \(90\)
default \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 \left (\sqrt {3}-1\right ) \operatorname {arctanh}\left (\sqrt {x^{3}+1}\right )}{3}\) \(132\)
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}-\frac {2 \,\operatorname {arctanh}\left (\sqrt {x^{3}+1}\right ) \left (1-\sqrt {3}\right )}{3}\) \(134\)

input
int((1+x-3^(1/2))/x/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/3/Pi^(1/2)*(-2*Pi^(1/2)*ln(1/2+1/2*(x^3+1)^(1/2))+(-2*ln(2)+3*ln(x))*Pi^ 
(1/2))+x*hypergeom([1/3,1/2],[4/3],-x^3)-1/3*3^(1/2)/Pi^(1/2)*(-2*Pi^(1/2) 
*ln(1/2+1/2*(x^3+1)^(1/2))+(-2*ln(2)+3*ln(x))*Pi^(1/2))
 
3.2.56.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.26 \[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=\frac {1}{3} \, {\left (\sqrt {3} - 1\right )} \log \left (\frac {x^{3} + 2 \, \sqrt {x^{3} + 1} + 2}{x^{3}}\right ) + 2 \, {\rm weierstrassPInverse}\left (0, -4, x\right ) \]

input
integrate((1+x-3^(1/2))/x/(x^3+1)^(1/2),x, algorithm="fricas")
 
output
1/3*(sqrt(3) - 1)*log((x^3 + 2*sqrt(x^3 + 1) + 2)/x^3) + 2*weierstrassPInv 
erse(0, -4, x)
 
3.2.56.6 Sympy [A] (verification not implemented)

Time = 2.27 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.44 \[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=\frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \frac {2 \operatorname {asinh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} + \frac {2 \sqrt {3} \operatorname {asinh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} \]

input
integrate((1+x-3**(1/2))/x/(x**3+1)**(1/2),x)
 
output
x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3) 
) - 2*asinh(x**(-3/2))/3 + 2*sqrt(3)*asinh(x**(-3/2))/3
 
3.2.56.7 Maxima [F]

\[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=\int { \frac {x - \sqrt {3} + 1}{\sqrt {x^{3} + 1} x} \,d x } \]

input
integrate((1+x-3^(1/2))/x/(x^3+1)^(1/2),x, algorithm="maxima")
 
output
integrate((x - sqrt(3) + 1)/(sqrt(x^3 + 1)*x), x)
 
3.2.56.8 Giac [F]

\[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=\int { \frac {x - \sqrt {3} + 1}{\sqrt {x^{3} + 1} x} \,d x } \]

input
integrate((1+x-3^(1/2))/x/(x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate((x - sqrt(3) + 1)/(sqrt(x^3 + 1)*x), x)
 
3.2.56.9 Mupad [B] (verification not implemented)

Time = 19.81 (sec) , antiderivative size = 334, normalized size of antiderivative = 2.63 \[ \int \frac {1-\sqrt {3}+x}{x \sqrt {1+x^3}} \, dx=\frac {2\,\sqrt {3}\,\mathrm {atanh}\left (\sqrt {x^3+1}\right )}{3}+\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int((x - 3^(1/2) + 1)/(x*(x^3 + 1)^(1/2)),x)
 
output
(2*3^(1/2)*atanh((x^3 + 1)^(1/2)))/3 + (2*((3^(1/2)*1i)/2 + 3/2)*((x + (3^ 
(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 
+ 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*el 
lipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3 
/2)/((3^(1/2)*1i)/2 - 3/2)))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i 
)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2) - ( 
2*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2 
))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2 
)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/2 + 3/2, asin(((x 
+ 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i) 
/2 - 3/2)))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - 
 ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)