3.2.58 \(\int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx\) [158]

3.2.58.1 Optimal result
3.2.58.2 Mathematica [C] (verified)
3.2.58.3 Rubi [A] (verified)
3.2.58.4 Maple [A] (verified)
3.2.58.5 Fricas [C] (verification not implemented)
3.2.58.6 Sympy [A] (verification not implemented)
3.2.58.7 Maxima [F]
3.2.58.8 Giac [F]
3.2.58.9 Mupad [B] (verification not implemented)

3.2.58.1 Optimal result

Integrand size = 25, antiderivative size = 144 \[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=\frac {2}{3} \left (1-\sqrt {3}\right ) \arctan \left (\sqrt {-1+x^3}\right )+\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \]

output
2/3*arctan((x^3-1)^(1/2))*(1-3^(1/2))+2/3*(1-x)*EllipticF((1-x+3^(1/2))/(1 
-x-3^(1/2)),2*I-I*3^(1/2))*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2+x+1)/(1-x-3^(1/ 
2))^2)^(1/2)*3^(3/4)/(x^3-1)^(1/2)/((-1+x)/(1-x-3^(1/2))^2)^(1/2)
 
3.2.58.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.42 \[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=\frac {2}{3} \left (1-\sqrt {3}\right ) \arctan \left (\sqrt {-1+x^3}\right )-\frac {x \sqrt {1-x^3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right )}{\sqrt {-1+x^3}} \]

input
Integrate[(1 - Sqrt[3] - x)/(x*Sqrt[-1 + x^3]),x]
 
output
(2*(1 - Sqrt[3])*ArcTan[Sqrt[-1 + x^3]])/3 - (x*Sqrt[1 - x^3]*Hypergeometr 
ic2F1[1/3, 1/2, 4/3, x^3])/Sqrt[-1 + x^3]
 
3.2.58.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2371, 25, 760, 798, 73, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-x-\sqrt {3}+1}{x \sqrt {x^3-1}} \, dx\)

\(\Big \downarrow \) 2371

\(\displaystyle \int -\frac {1}{\sqrt {x^3-1}}dx+\left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {x^3-1}}dx-\int \frac {1}{\sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 760

\(\displaystyle \left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {x^3-1}}dx+\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{3} \left (1-\sqrt {3}\right ) \int \frac {1}{x^3 \sqrt {x^3-1}}dx^3+\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2}{3} \left (1-\sqrt {3}\right ) \int \frac {1}{x^6+1}d\sqrt {x^3-1}+\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}+\frac {2}{3} \left (1-\sqrt {3}\right ) \arctan \left (\sqrt {x^3-1}\right )\)

input
Int[(1 - Sqrt[3] - x)/(x*Sqrt[-1 + x^3]),x]
 
output
(2*(1 - Sqrt[3])*ArcTan[Sqrt[-1 + x^3]])/3 + (2*Sqrt[2 - Sqrt[3]]*(1 - x)* 
Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x) 
/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] 
 - x)^2)]*Sqrt[-1 + x^3])
 

3.2.58.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2371
Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[Coeff[Pq, 
x, 0]   Int[1/(x*Sqrt[a + b*x^n]), x], x] + Int[ExpandToSum[(Pq - Coeff[Pq, 
 x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IG 
tQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]
 
3.2.58.4 Maple [A] (verified)

Time = 1.10 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.92

method result size
default \(-\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}-\frac {2 \left (\sqrt {3}-1\right ) \arctan \left (\sqrt {x^{3}-1}\right )}{3}\) \(132\)
elliptic \(-\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 \arctan \left (\sqrt {x^{3}-1}\right ) \left (1-\sqrt {3}\right )}{3}\) \(134\)
meijerg \(\frac {\sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }\right )}{3 \sqrt {\pi }\, \sqrt {\operatorname {signum}\left (x^{3}-1\right )}}-\frac {\sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};x^{3}\right )}{\sqrt {\operatorname {signum}\left (x^{3}-1\right )}}-\frac {\sqrt {3}\, \sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{3}+1}}{2}\right )+\left (-2 \ln \left (2\right )+3 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }\right )}{3 \sqrt {\pi }\, \sqrt {\operatorname {signum}\left (x^{3}-1\right )}}\) \(155\)

input
int((1-x-3^(1/2))/x/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3 
^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/ 
2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3/ 
2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-2/3*(3^(1/2)-1)*arctan((x^3-1 
)^(1/2))
 
3.2.58.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.35 \[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=-\frac {1}{3} \, \sqrt {-2 \, \sqrt {3} + 4} \arctan \left (\frac {{\left (x^{3} + \sqrt {3} {\left (x^{3} - 2\right )} - 2\right )} \sqrt {-2 \, \sqrt {3} + 4}}{4 \, \sqrt {x^{3} - 1}}\right ) - 2 \, {\rm weierstrassPInverse}\left (0, 4, x\right ) \]

input
integrate((1-x-3^(1/2))/x/(x^3-1)^(1/2),x, algorithm="fricas")
 
output
-1/3*sqrt(-2*sqrt(3) + 4)*arctan(1/4*(x^3 + sqrt(3)*(x^3 - 2) - 2)*sqrt(-2 
*sqrt(3) + 4)/sqrt(x^3 - 1)) - 2*weierstrassPInverse(0, 4, x)
 
3.2.58.6 Sympy [A] (verification not implemented)

Time = 3.83 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.65 \[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=\frac {i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \sqrt {3} \left (\begin {cases} \frac {2 i \operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\- \frac {2 \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {otherwise} \end {cases}\right ) + \begin {cases} \frac {2 i \operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\- \frac {2 \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} & \text {otherwise} \end {cases} \]

input
integrate((1-x-3**(1/2))/x/(x**3-1)**(1/2),x)
 
output
I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3)/(3*gamma(4/3)) - sqrt(3)*Pi 
ecewise((2*I*acosh(x**(-3/2))/3, 1/Abs(x**3) > 1), (-2*asin(x**(-3/2))/3, 
True)) + Piecewise((2*I*acosh(x**(-3/2))/3, 1/Abs(x**3) > 1), (-2*asin(x** 
(-3/2))/3, True))
 
3.2.58.7 Maxima [F]

\[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=\int { -\frac {x + \sqrt {3} - 1}{\sqrt {x^{3} - 1} x} \,d x } \]

input
integrate((1-x-3^(1/2))/x/(x^3-1)^(1/2),x, algorithm="maxima")
 
output
-integrate((x + sqrt(3) - 1)/(sqrt(x^3 - 1)*x), x)
 
3.2.58.8 Giac [F]

\[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=\int { -\frac {x + \sqrt {3} - 1}{\sqrt {x^{3} - 1} x} \,d x } \]

input
integrate((1-x-3^(1/2))/x/(x^3-1)^(1/2),x, algorithm="giac")
 
output
integrate(-(x + sqrt(3) - 1)/(sqrt(x^3 - 1)*x), x)
 
3.2.58.9 Mupad [B] (verification not implemented)

Time = 20.25 (sec) , antiderivative size = 334, normalized size of antiderivative = 2.32 \[ \int \frac {1-\sqrt {3}-x}{x \sqrt {-1+x^3}} \, dx=-\frac {2\,\sqrt {3}\,\mathrm {atan}\left (\sqrt {x^3-1}\right )}{3}+\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int(-(x + 3^(1/2) - 1)/(x*(x^3 - 1)^(1/2)),x)
 
output
(2*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3 
/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x 
- 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)*1i)/ 
2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(((3^(1 
/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1 
/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2) - (2*3^(1/2)*atan((x^3 - 1)^(1/2)))/3 - 
 (2*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 
3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x 
 - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/2 + 3/2, asin( 
(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2 
)*1i)/2 - 3/2)))/(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^( 
1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)