3.1.1 \(\int \frac {1}{(2^{2/3}+x) \sqrt {1+x^3}} \, dx\) [1]

3.1.1.1 Optimal result
3.1.1.2 Mathematica [C] (warning: unable to verify)
3.1.1.3 Rubi [A] (verified)
3.1.1.4 Maple [A] (verified)
3.1.1.5 Fricas [C] (verification not implemented)
3.1.1.6 Sympy [F]
3.1.1.7 Maxima [F]
3.1.1.8 Giac [F]
3.1.1.9 Mupad [F(-1)]

3.1.1.1 Optimal result

Integrand size = 19, antiderivative size = 145 \[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {3} \left (1+\sqrt [3]{2} x\right )}{\sqrt {1+x^3}}\right )}{3 \sqrt {3}}+\frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

output
2/9*arctan((1+2^(1/3)*x)*3^(1/2)/(x^3+1)^(1/2))*3^(1/2)+2/9*2^(1/3)*(1+x)* 
EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1 
/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3 
^(1/2))^2)^(1/2)
 
3.1.1.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 20.14 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {4 i \sqrt {2} \sqrt {\frac {i (1+x)}{3 i+\sqrt {3}}} \sqrt {1-x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{i+2 i 2^{2/3}+\sqrt {3}},\arcsin \left (\frac {\sqrt {i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )}{\left (1+2\ 2^{2/3}-i \sqrt {3}\right ) \sqrt {1+x^3}} \]

input
Integrate[1/((2^(2/3) + x)*Sqrt[1 + x^3]),x]
 
output
((4*I)*Sqrt[2]*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2]*Ellipti 
cPi[(2*Sqrt[3])/(I + (2*I)*2^(2/3) + Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - ( 
2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])])/((1 + 2*2^(2/3) 
- I*Sqrt[3])*Sqrt[1 + x^3])
 
3.1.1.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {2559, 759, 2562, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (x+2^{2/3}\right ) \sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2559

\(\displaystyle \frac {1}{3} \sqrt [3]{2} \int \frac {1}{\sqrt {x^3+1}}dx+\frac {\int \frac {2^{2/3}-2 x}{\left (x+2^{2/3}\right ) \sqrt {x^3+1}}dx}{3\ 2^{2/3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\int \frac {2^{2/3}-2 x}{\left (x+2^{2/3}\right ) \sqrt {x^3+1}}dx}{3\ 2^{2/3}}+\frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2562

\(\displaystyle \frac {2}{3} \int \frac {1}{\frac {3 \left (\sqrt [3]{2} x+1\right )^2}{x^3+1}+1}d\frac {\sqrt [3]{2} x+1}{\sqrt {x^3+1}}+\frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 \sqrt [3]{2} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \arctan \left (\frac {\sqrt {3} \left (\sqrt [3]{2} x+1\right )}{\sqrt {x^3+1}}\right )}{3 \sqrt {3}}\)

input
Int[1/((2^(2/3) + x)*Sqrt[1 + x^3]),x]
 
output
(2*ArcTan[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[1 + x^3]])/(3*Sqrt[3]) + (2*2^(1/ 
3)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Ellip 
ticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1 
/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])
 

3.1.1.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2559
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[2/ 
(3*c)   Int[1/Sqrt[a + b*x^3], x], x] + Simp[1/(3*c)   Int[(c - 2*d*x)/((c 
+ d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 - 4* 
a*d^3, 0]
 

rule 2562
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> Simp[2*(e/d)   Subst[Int[1/(1 + 3*a*x^2), x], x, (1 + 2*d*(x/c)) 
/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] 
&& EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]
 
3.1.1.4 Maple [A] (verified)

Time = 3.11 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.96

method result size
default \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{2^{\frac {2}{3}}-1}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}\, \left (2^{\frac {2}{3}}-1\right )}\) \(139\)
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{2^{\frac {2}{3}}-1}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}\, \left (2^{\frac {2}{3}}-1\right )}\) \(139\)

input
int(1/(2^(2/3)+x)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1 
/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2 
)))^(1/2)/(x^3+1)^(1/2)/(2^(2/3)-1)*EllipticPi(((x+1)/(3/2-1/2*I*3^(1/2))) 
^(1/2),(-3/2+1/2*I*3^(1/2))/(2^(2/3)-1),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I* 
3^(1/2)))^(1/2))
 
3.1.1.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.51 \[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=-\frac {1}{9} \, \sqrt {3} \arctan \left (-\frac {\sqrt {3} {\left (5 \, x^{3} - 2^{\frac {2}{3}} {\left (x^{5} + x^{2}\right )} + 2^{\frac {1}{3}} {\left (7 \, x^{4} + 4 \, x\right )} + 2\right )} \sqrt {x^{3} + 1}}{6 \, {\left (2 \, x^{6} + 3 \, x^{3} + 1\right )}}\right ) + \frac {2}{3} \cdot 2^{\frac {1}{3}} {\rm weierstrassPInverse}\left (0, -4, x\right ) \]

input
integrate(1/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="fricas")
 
output
-1/9*sqrt(3)*arctan(-1/6*sqrt(3)*(5*x^3 - 2^(2/3)*(x^5 + x^2) + 2^(1/3)*(7 
*x^4 + 4*x) + 2)*sqrt(x^3 + 1)/(2*x^6 + 3*x^3 + 1)) + 2/3*2^(1/3)*weierstr 
assPInverse(0, -4, x)
 
3.1.1.6 Sympy [F]

\[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=\int \frac {1}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 2^{\frac {2}{3}}\right )}\, dx \]

input
integrate(1/(2**(2/3)+x)/(x**3+1)**(1/2),x)
 
output
Integral(1/(sqrt((x + 1)*(x**2 - x + 1))*(x + 2**(2/3))), x)
 
3.1.1.7 Maxima [F]

\[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {1}{\sqrt {x^{3} + 1} {\left (x + 2^{\frac {2}{3}}\right )}} \,d x } \]

input
integrate(1/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(x^3 + 1)*(x + 2^(2/3))), x)
 
3.1.1.8 Giac [F]

\[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {1}{\sqrt {x^{3} + 1} {\left (x + 2^{\frac {2}{3}}\right )}} \,d x } \]

input
integrate(1/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(x^3 + 1)*(x + 2^(2/3))), x)
 
3.1.1.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (2^{2/3}+x\right ) \sqrt {1+x^3}} \, dx=\int \frac {1}{\sqrt {x^3+1}\,\left (x+2^{2/3}\right )} \,d x \]

input
int(1/((x^3 + 1)^(1/2)*(x + 2^(2/3))),x)
 
output
int(1/((x^3 + 1)^(1/2)*(x + 2^(2/3))), x)