3.3.79 \(\int \frac {(\frac {e (a+b x^2)}{c+d x^2})^{3/2}}{x} \, dx\) [279]

3.3.79.1 Optimal result
3.3.79.2 Mathematica [A] (verified)
3.3.79.3 Rubi [A] (verified)
3.3.79.4 Maple [B] (verified)
3.3.79.5 Fricas [A] (verification not implemented)
3.3.79.6 Sympy [F(-1)]
3.3.79.7 Maxima [F(-2)]
3.3.79.8 Giac [F(-2)]
3.3.79.9 Mupad [F(-1)]

3.3.79.1 Optimal result

Integrand size = 26, antiderivative size = 151 \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}-\frac {a^{3/2} e^{3/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{c^{3/2}}+\frac {b^{3/2} e^{3/2} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{d^{3/2}} \]

output
-a^(3/2)*e^(3/2)*arctanh(c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^( 
1/2))/c^(3/2)+b^(3/2)*e^(3/2)*arctanh(d^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2 
)/b^(1/2)/e^(1/2))/d^(3/2)-(-a*d+b*c)*e*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c/d
 
3.3.79.2 Mathematica [A] (verified)

Time = 2.30 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.24 \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=\frac {e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (-a^{3/2} d^{3/2} \sqrt {c+d x^2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )+\sqrt {c} \left (\sqrt {d} (-b c+a d) \sqrt {a+b x^2}+b^{3/2} c \sqrt {c+d x^2} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b} \sqrt {c+d x^2}}\right )\right )\right )}{c^{3/2} d^{3/2} \sqrt {a+b x^2}} \]

input
Integrate[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x,x]
 
output
(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(-(a^(3/2)*d^(3/2)*Sqrt[c + d*x^2]*Ar 
cTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]) + Sqrt[c]*(Sqr 
t[d]*(-(b*c) + a*d)*Sqrt[a + b*x^2] + b^(3/2)*c*Sqrt[c + d*x^2]*ArcTanh[(S 
qrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])])))/(c^(3/2)*d^(3/2)*Sqr 
t[a + b*x^2])
 
3.3.79.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.21, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {2053, 2052, 25, 381, 27, 397, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx\)

\(\Big \downarrow \) 2053

\(\displaystyle \frac {1}{2} \int \frac {\left (\frac {e \left (b x^2+a\right )}{d x^2+c}\right )^{3/2}}{x^2}dx^2\)

\(\Big \downarrow \) 2052

\(\displaystyle e (b c-a d) \int -\frac {x^8}{\left (a e-c x^4\right ) \left (b e-d x^4\right )}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\left (e (b c-a d) \int \frac {x^8}{\left (a e-c x^4\right ) \left (b e-d x^4\right )}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}\right )\)

\(\Big \downarrow \) 381

\(\displaystyle e (b c-a d) \left (\frac {\int \frac {e \left (a b e-(b c+a d) x^4\right )}{\left (a e-c x^4\right ) \left (b e-d x^4\right )}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{c d}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle e (b c-a d) \left (\frac {e \int \frac {a b e-(b c+a d) x^4}{\left (a e-c x^4\right ) \left (b e-d x^4\right )}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{c d}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}\right )\)

\(\Big \downarrow \) 397

\(\displaystyle e (b c-a d) \left (\frac {e \left (\frac {b^2 c \int \frac {1}{b e-d x^4}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{b c-a d}-\frac {a^2 d \int \frac {1}{a e-c x^4}d\sqrt {\frac {e \left (b x^2+a\right )}{d x^2+c}}}{b c-a d}\right )}{c d}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle e (b c-a d) \left (\frac {e \left (\frac {b^{3/2} c \text {arctanh}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {d} \sqrt {e} (b c-a d)}-\frac {a^{3/2} d \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {c} \sqrt {e} (b c-a d)}\right )}{c d}-\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}\right )\)

input
Int[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x,x]
 
output
(b*c - a*d)*e*(-(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/(c*d)) + (e*(-((a^(3/2) 
*d*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])]) 
/(Sqrt[c]*(b*c - a*d)*Sqrt[e])) + (b^(3/2)*c*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + 
 b*x^2))/(c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(Sqrt[d]*(b*c - a*d)*Sqrt[e]))) 
/(c*d))
 

3.3.79.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 381
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
+ 1)/(b*d*(m + 2*(p + q) + 1))), x] - Simp[e^4/(b*d*(m + 2*(p + q) + 1)) 
Int[(e*x)^(m - 4)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*c*(m - 3) + (a*d*(m + 
2*q - 1) + b*c*(m + 2*p - 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q 
}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 3] && IntBinomialQ[a, b, c, d, e, m, 2 
, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 2052
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_S 
ymbol] :> With[{q = Denominator[p]}, Simp[q*e*(b*c - a*d)   Subst[Int[x^(q* 
(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a + b* 
x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] 
&& IntegerQ[m]
 

rule 2053
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.) 
))^(p_), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(e*( 
(a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p}, 
 x] && IntegerQ[Simplify[(m + 1)/n]]
 
3.3.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(400\) vs. \(2(121)=242\).

Time = 0.14 (sec) , antiderivative size = 401, normalized size of antiderivative = 2.66

method result size
default \(\frac {\left (-\sqrt {b d}\, \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{2} d^{2} x^{2}+\ln \left (\frac {2 b d \,x^{2}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}\, b^{2} c d \,x^{2}-\sqrt {b d}\, \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}+2 a c}{x^{2}}\right ) a^{2} c d +\ln \left (\frac {2 b d \,x^{2}+2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}\, b^{2} c^{2}+2 \sqrt {b d}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {a c}\, a d -2 \sqrt {b d}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {a c}\, b c \right ) \left (d \,x^{2}+c \right ) {\left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )}^{\frac {3}{2}}}{2 c d \sqrt {a c}\, \sqrt {b d}\, \left (b \,x^{2}+a \right ) \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}}\) \(401\)

input
int((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x,x,method=_RETURNVERBOSE)
 
output
1/2*(-(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x 
^2+a*c)^(1/2)+2*a*c)/x^2)*a^2*d^2*x^2+ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2 
+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*b^2*c*d* 
x^2-(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2 
+a*c)^(1/2)+2*a*c)/x^2)*a^2*c*d+ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x 
^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*b^2*c^2+2*(b*d 
)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*(a*c)^(1/2)*a*d-2*(b*d)^(1/2)*((d*x^2+ 
c)*(b*x^2+a))^(1/2)*(a*c)^(1/2)*b*c)/c/d*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c)) 
^(3/2)/(a*c)^(1/2)/(b*d)^(1/2)/(b*x^2+a)/((d*x^2+c)*(b*x^2+a))^(1/2)
 
3.3.79.5 Fricas [A] (verification not implemented)

Time = 0.90 (sec) , antiderivative size = 1049, normalized size of antiderivative = 6.95 \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=\left [\frac {b c \sqrt {\frac {b e}{d}} e \log \left (8 \, b^{2} d^{2} e x^{4} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} e x^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e + 4 \, {\left (2 \, b d^{3} x^{4} + b c^{2} d + a c d^{2} + {\left (3 \, b c d^{2} + a d^{3}\right )} x^{2}\right )} \sqrt {\frac {b e}{d}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}\right ) + a d \sqrt {\frac {a e}{c}} e \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e x^{4} + 8 \, a^{2} c^{2} e + 8 \, {\left (a b c^{2} + a^{2} c d\right )} e x^{2} - 4 \, {\left ({\left (b c^{2} d + a c d^{2}\right )} x^{4} + 2 \, a c^{3} + {\left (b c^{3} + 3 \, a c^{2} d\right )} x^{2}\right )} \sqrt {\frac {a e}{c}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{x^{4}}\right ) - 4 \, {\left (b c - a d\right )} e \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{4 \, c d}, -\frac {2 \, b c \sqrt {-\frac {b e}{d}} e \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {-\frac {b e}{d}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{2 \, {\left (b^{2} e x^{2} + a b e\right )}}\right ) - a d \sqrt {\frac {a e}{c}} e \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e x^{4} + 8 \, a^{2} c^{2} e + 8 \, {\left (a b c^{2} + a^{2} c d\right )} e x^{2} - 4 \, {\left ({\left (b c^{2} d + a c d^{2}\right )} x^{4} + 2 \, a c^{3} + {\left (b c^{3} + 3 \, a c^{2} d\right )} x^{2}\right )} \sqrt {\frac {a e}{c}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{x^{4}}\right ) + 4 \, {\left (b c - a d\right )} e \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{4 \, c d}, \frac {2 \, a d \sqrt {-\frac {a e}{c}} e \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {-\frac {a e}{c}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{2 \, {\left (a b e x^{2} + a^{2} e\right )}}\right ) + b c \sqrt {\frac {b e}{d}} e \log \left (8 \, b^{2} d^{2} e x^{4} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} e x^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e + 4 \, {\left (2 \, b d^{3} x^{4} + b c^{2} d + a c d^{2} + {\left (3 \, b c d^{2} + a d^{3}\right )} x^{2}\right )} \sqrt {\frac {b e}{d}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}\right ) - 4 \, {\left (b c - a d\right )} e \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{4 \, c d}, \frac {a d \sqrt {-\frac {a e}{c}} e \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {-\frac {a e}{c}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{2 \, {\left (a b e x^{2} + a^{2} e\right )}}\right ) - b c \sqrt {-\frac {b e}{d}} e \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {-\frac {b e}{d}} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{2 \, {\left (b^{2} e x^{2} + a b e\right )}}\right ) - 2 \, {\left (b c - a d\right )} e \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{2 \, c d}\right ] \]

input
integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x,x, algorithm="fricas")
 
output
[1/4*(b*c*sqrt(b*e/d)*e*log(8*b^2*d^2*e*x^4 + 8*(b^2*c*d + a*b*d^2)*e*x^2 
+ (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*e + 4*(2*b*d^3*x^4 + b*c^2*d + a*c*d^2 + 
 (3*b*c*d^2 + a*d^3)*x^2)*sqrt(b*e/d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))) + 
 a*d*sqrt(a*e/c)*e*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*e*x^4 + 8*a^2*c^2* 
e + 8*(a*b*c^2 + a^2*c*d)*e*x^2 - 4*((b*c^2*d + a*c*d^2)*x^4 + 2*a*c^3 + ( 
b*c^3 + 3*a*c^2*d)*x^2)*sqrt(a*e/c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/x^4 
) - 4*(b*c - a*d)*e*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(c*d), -1/4*(2*b*c* 
sqrt(-b*e/d)*e*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt(-b*e/d)*sqrt((b*e*x 
^2 + a*e)/(d*x^2 + c))/(b^2*e*x^2 + a*b*e)) - a*d*sqrt(a*e/c)*e*log(((b^2* 
c^2 + 6*a*b*c*d + a^2*d^2)*e*x^4 + 8*a^2*c^2*e + 8*(a*b*c^2 + a^2*c*d)*e*x 
^2 - 4*((b*c^2*d + a*c*d^2)*x^4 + 2*a*c^3 + (b*c^3 + 3*a*c^2*d)*x^2)*sqrt( 
a*e/c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/x^4) + 4*(b*c - a*d)*e*sqrt((b*e 
*x^2 + a*e)/(d*x^2 + c)))/(c*d), 1/4*(2*a*d*sqrt(-a*e/c)*e*arctan(1/2*((b* 
c + a*d)*x^2 + 2*a*c)*sqrt(-a*e/c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(a*b* 
e*x^2 + a^2*e)) + b*c*sqrt(b*e/d)*e*log(8*b^2*d^2*e*x^4 + 8*(b^2*c*d + a*b 
*d^2)*e*x^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*e + 4*(2*b*d^3*x^4 + b*c^2*d 
 + a*c*d^2 + (3*b*c*d^2 + a*d^3)*x^2)*sqrt(b*e/d)*sqrt((b*e*x^2 + a*e)/(d* 
x^2 + c))) - 4*(b*c - a*d)*e*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(c*d), 1/2 
*(a*d*sqrt(-a*e/c)*e*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt(-a*e/c)*sqr 
t((b*e*x^2 + a*e)/(d*x^2 + c))/(a*b*e*x^2 + a^2*e)) - b*c*sqrt(-b*e/d)*...
 
3.3.79.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=\text {Timed out} \]

input
integrate((e*(b*x**2+a)/(d*x**2+c))**(3/2)/x,x)
 
output
Timed out
 
3.3.79.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.79.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=\text {Exception raised: TypeError} \]

input
integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.3.79.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x} \, dx=\int \frac {{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}}{x} \,d x \]

input
int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x,x)
 
output
int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x, x)