3.3.85 \(\int (\frac {e (a+b x^2)}{c+d x^2})^{3/2} \, dx\) [285]

3.3.85.1 Optimal result
3.3.85.2 Mathematica [C] (verified)
3.3.85.3 Rubi [A] (verified)
3.3.85.4 Maple [A] (verified)
3.3.85.5 Fricas [A] (verification not implemented)
3.3.85.6 Sympy [F(-1)]
3.3.85.7 Maxima [F]
3.3.85.8 Giac [F]
3.3.85.9 Mupad [F(-1)]

3.3.85.1 Optimal result

Integrand size = 22, antiderivative size = 262 \[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=-\frac {(b c-a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}+\frac {(2 b c-a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d}-\frac {(2 b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b \sqrt {c} e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

output
-(-a*d+b*c)*e*x*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c/d+(-a*d+2*b*c)*e*x*(e*(b*x 
^2+a)/(d*x^2+c))^(1/2)/c/d-(-a*d+2*b*c)*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c 
)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*( 
e*(b*x^2+a)/(d*x^2+c))^(1/2)/d^(3/2)/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/ 
2)+b*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2) 
/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2 
)/d^(3/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)
 
3.3.85.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.21 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.79 \[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=\frac {e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (i b c (-2 b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+(-b c+a d) \left (\sqrt {\frac {b}{a}} d x \left (a+b x^2\right )-2 i b c \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )\right )}{\sqrt {\frac {b}{a}} c d^2 \left (a+b x^2\right )} \]

input
Integrate[((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]
 
output
(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(I*b*c*(-2*b*c + a*d)*Sqrt[1 + (b*x^2 
)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + 
(-(b*c) + a*d)*(Sqrt[b/a]*d*x*(a + b*x^2) - (2*I)*b*c*Sqrt[1 + (b*x^2)/a]* 
Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])))/(Sqr 
t[b/a]*c*d^2*(a + b*x^2))
 
3.3.85.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.16, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {2058, 315, 27, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \int \frac {\left (b x^2+a\right )^{3/2}}{\left (d x^2+c\right )^{3/2}}dx}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {\int \frac {b \left ((2 b c-a d) x^2+a c\right )}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{c d \sqrt {c+d x^2}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {b \int \frac {(2 b c-a d) x^2+a c}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{c d \sqrt {c+d x^2}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {b \left (a c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+(2 b c-a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{c d \sqrt {c+d x^2}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {b \left ((2 b c-a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{c d \sqrt {c+d x^2}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {b \left ((2 b c-a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{c d \sqrt {c+d x^2}}\right )}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (\frac {b \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+(2 b c-a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{c d \sqrt {c+d x^2}}\right )}{\sqrt {a+b x^2}}\)

input
Int[((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]
 
output
(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2]*(-(((b*c - a*d)*x*Sqr 
t[a + b*x^2])/(c*d*Sqrt[c + d*x^2])) + (b*((2*b*c - a*d)*((x*Sqrt[a + b*x^ 
2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[ 
d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + 
d*x^2))]*Sqrt[c + d*x^2])) + (c^(3/2)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sq 
rt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + 
 d*x^2))]*Sqrt[c + d*x^2])))/(c*d)))/Sqrt[a + b*x^2]
 

3.3.85.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
3.3.85.4 Maple [A] (verified)

Time = 3.34 (sec) , antiderivative size = 527, normalized size of antiderivative = 2.01

method result size
default \(\frac {{\left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )}^{\frac {3}{2}} \left (d \,x^{2}+c \right ) \left (\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{3}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{3}+2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d -2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2}-\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d +2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x -\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b c d x \right )}{\left (b \,x^{2}+a \right )^{2} d^{2} c \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(527\)

input
int((e*(b*x^2+a)/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
(e*(b*x^2+a)/(d*x^2+c))^(3/2)*(d*x^2+c)*((b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/ 
2)*(-b/a)^(1/2)*a*b*d^2*x^3-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/ 
2)*b^2*c*d*x^3+2*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c 
)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b*c*d-2*((d*x^2+c)* 
(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a 
)^(1/2),(a*d/b/c)^(1/2))*b^2*c^2-((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a) 
^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b*c 
*d+2*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*E 
llipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*c^2+(b*d*x^4+a*d*x^2+b*c*x^2+ 
a*c)^(1/2)*(-b/a)^(1/2)*a^2*d^2*x-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/ 
a)^(1/2)*a*b*c*d*x)/(b*x^2+a)^2/d^2/c/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^ 
2+a*c)^(1/2)
 
3.3.85.5 Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.66 \[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=-\frac {{\left (2 \, b c^{2} - a c d\right )} \sqrt {\frac {b e}{d}} e x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (2 \, b c^{2} - a c d + a d^{2}\right )} \sqrt {\frac {b e}{d}} e x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (b c d e x^{2} + {\left (2 \, b c^{2} - a c d\right )} e\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{c d^{2} x} \]

input
integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")
 
output
-((2*b*c^2 - a*c*d)*sqrt(b*e/d)*e*x*sqrt(-c/d)*elliptic_e(arcsin(sqrt(-c/d 
)/x), a*d/(b*c)) - (2*b*c^2 - a*c*d + a*d^2)*sqrt(b*e/d)*e*x*sqrt(-c/d)*el 
liptic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - (b*c*d*e*x^2 + (2*b*c^2 - a*c* 
d)*e)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(c*d^2*x)
 
3.3.85.6 Sympy [F(-1)]

Timed out. \[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=\text {Timed out} \]

input
integrate((e*(b*x**2+a)/(d*x**2+c))**(3/2),x)
 
output
Timed out
 
3.3.85.7 Maxima [F]

\[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=\int { \left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}} \,d x } \]

input
integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")
 
output
integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2), x)
 
3.3.85.8 Giac [F]

\[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=\int { \left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}} \,d x } \]

input
integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")
 
output
integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2), x)
 
3.3.85.9 Mupad [F(-1)]

Timed out. \[ \int \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx=\int {\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2} \,d x \]

input
int(((e*(a + b*x^2))/(c + d*x^2))^(3/2),x)
 
output
int(((e*(a + b*x^2))/(c + d*x^2))^(3/2), x)