3.4.3 \(\int \frac {x^2}{\sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\) [303]

3.4.3.1 Optimal result
3.4.3.2 Mathematica [C] (verified)
3.4.3.3 Rubi [A] (verified)
3.4.3.4 Maple [A] (verified)
3.4.3.5 Fricas [A] (verification not implemented)
3.4.3.6 Sympy [F(-1)]
3.4.3.7 Maxima [F]
3.4.3.8 Giac [F]
3.4.3.9 Mupad [F(-1)]

3.4.3.1 Optimal result

Integrand size = 26, antiderivative size = 312 \[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=\frac {x \left (a+b x^2\right )}{3 b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {(b c-2 a d) x \left (a+b x^2\right )}{3 b^2 \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} (b c-2 a d) \left (a+b x^2\right ) E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {c^{3/2} \left (a+b x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{3 b \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

output
1/3*x*(b*x^2+a)/b/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+1/3*(-2*a*d+b*c)*x*(b*x^2+ 
a)/b^2/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-1/3*c^(3/2)*(b*x^2+a)*(1/(1 
+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c) 
^(1/2),(1-b*c/a/d)^(1/2))/b/(d*x^2+c)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1 
/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-1/3*(-2*a*d+b*c)*(b*x^2+a)*(1/(1+d*x^2/c 
))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),( 
1-b*c/a/d)^(1/2))*c^(1/2)/b^2/(d*x^2+c)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^ 
(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)
 
3.4.3.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.02 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.68 \[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=\frac {\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (c+d x^2\right )+i c (-b c+2 a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i c (-b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )}{3 b \sqrt {\frac {b}{a}} d \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

input
Integrate[x^2/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]
 
output
(Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2) + I*c*(-(b*c) + 2*a*d)*Sqrt[1 + (b* 
x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] 
 - I*c*(-(b*c) + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I* 
ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*b*Sqrt[b/a]*d*Sqrt[(e*(a + b*x^2))/ 
(c + d*x^2)]*(c + d*x^2))
 
3.4.3.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 294, normalized size of antiderivative = 0.94, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2058, 380, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {a+b x^2} \int \frac {x^2 \sqrt {d x^2+c}}{\sqrt {b x^2+a}}dx}{\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 380

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b}-\frac {\int \frac {a c-(b c-2 a d) x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 b}\right )}{\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b}-\frac {a c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx-(b c-2 a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 b}\right )}{\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b}-\frac {\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 b}\right )}{\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b}-\frac {\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )}{3 b}\right )}{\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b}-\frac {\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{3 b}\right )}{\sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

input
Int[x^2/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]
 
output
(Sqrt[a + b*x^2]*((x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*b) - (-((b*c - 2* 
a*d)*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*E 
llipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c 
*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))) + (c^(3/2)*Sqrt[a + b*x^ 
2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[ 
(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))/(3*b)))/(Sqrt[(e*(a + b 
*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2])
 

3.4.3.3.1 Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 380
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b* 
(m + 2*(p + q) + 1))), x] - Simp[e^2/(b*(m + 2*(p + q) + 1))   Int[(e*x)^(m 
 - 2)*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[a*c*(m - 1) + (a*d*(m - 1) - 2 
*q*(b*c - a*d))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c 
- a*d, 0] && GtQ[q, 0] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, 
 q, x]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
3.4.3.4 Maple [A] (verified)

Time = 3.93 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.12

method result size
risch \(\frac {x \left (b \,x^{2}+a \right )}{3 b \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}-\frac {\left (\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {2 \left (2 a d -b c \right ) a c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (e d a +e b c +e \left (a d -b c \right )\right )}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{3 b \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(351\)
default \(\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {-\frac {b}{a}}\, b \,d^{2} x^{5}+\sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b c d \,x^{3}+a c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) d -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}+\sqrt {-\frac {b}{a}}\, a c d x \right )}{3 \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, b \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d}\) \(358\)

input
int(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/3*x*(b*x^2+a)/b/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-1/3/b*(a*c/(-b/a)^(1/2)*(1 
+b*x^2/a)^(1/2)*(1+1/c*d*x^2)^(1/2)/(b*d*e*x^4+a*d*e*x^2+b*c*e*x^2+a*c*e)^ 
(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+(a*d*e+b*c*e)/c/b/e)^(1/2))-2*(2*a*d-b* 
c)*a*c*e/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+1/c*d*x^2)^(1/2)/(b*d*e*x^4+a*d 
*e*x^2+b*c*e*x^2+a*c*e)^(1/2)/(e*d*a+e*b*c+e*(a*d-b*c))*(EllipticF(x*(-b/a 
)^(1/2),(-1+(a*d*e+b*c*e)/c/b/e)^(1/2))-EllipticE(x*(-b/a)^(1/2),(-1+(a*d* 
e+b*c*e)/c/b/e)^(1/2))))/(e*(b*x^2+a)/(d*x^2+c))^(1/2)*((d*x^2+c)*e*(b*x^2 
+a))^(1/2)/(d*x^2+c)
 
3.4.3.5 Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.59 \[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=-\frac {{\left (b c^{2} - 2 \, a c d\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (b c^{2} - 2 \, a c d - a d^{2}\right )} \sqrt {\frac {b e}{d}} x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left (b d^{2} x^{4} + b c^{2} - 2 \, a c d + 2 \, {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{3 \, b^{2} d e x} \]

input
integrate(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")
 
output
-1/3*((b*c^2 - 2*a*c*d)*sqrt(b*e/d)*x*sqrt(-c/d)*elliptic_e(arcsin(sqrt(-c 
/d)/x), a*d/(b*c)) - (b*c^2 - 2*a*c*d - a*d^2)*sqrt(b*e/d)*x*sqrt(-c/d)*el 
liptic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - (b*d^2*x^4 + b*c^2 - 2*a*c*d + 
 2*(b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(b^2*d*e*x)
 
3.4.3.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=\text {Timed out} \]

input
integrate(x**2/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)
 
output
Timed out
 
3.4.3.7 Maxima [F]

\[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=\int { \frac {x^{2}}{\sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}}} \,d x } \]

input
integrate(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")
 
output
integrate(x^2/sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)
 
3.4.3.8 Giac [F]

\[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=\int { \frac {x^{2}}{\sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}}} \,d x } \]

input
integrate(x^2/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")
 
output
integrate(x^2/sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)
 
3.4.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx=\int \frac {x^2}{\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \]

input
int(x^2/((e*(a + b*x^2))/(c + d*x^2))^(1/2),x)
 
output
int(x^2/((e*(a + b*x^2))/(c + d*x^2))^(1/2), x)