3.4.58 \(\int \frac {1}{x (a+\frac {b}{c+d x^2})^{3/2}} \, dx\) [358]

3.4.58.1 Optimal result
3.4.58.2 Mathematica [A] (verified)
3.4.58.3 Rubi [A] (warning: unable to verify)
3.4.58.4 Maple [B] (verified)
3.4.58.5 Fricas [B] (verification not implemented)
3.4.58.6 Sympy [F]
3.4.58.7 Maxima [A] (verification not implemented)
3.4.58.8 Giac [F(-2)]
3.4.58.9 Mupad [F(-1)]

3.4.58.1 Optimal result

Integrand size = 21, antiderivative size = 134 \[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=-\frac {b}{a (b+a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}+\frac {\text {arctanh}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {c^{3/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {b+a c}}\right )}{(b+a c)^{3/2}} \]

output
arctanh(((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/a^(1/2))/a^(3/2)-c^(3/2)*arctanh 
(c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(a*c+b)^(1/2))/(a*c+b)^(3/2)-b/ 
a/(a*c+b)/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)
 
3.4.58.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.04 \[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=-\frac {b}{a (b+a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}-\frac {c^{3/2} \arctan \left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {-b-a c}}\right )}{(-b-a c)^{3/2}}+\frac {\text {arctanh}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{a^{3/2}} \]

input
Integrate[1/(x*(a + b/(c + d*x^2))^(3/2)),x]
 
output
-(b/(a*(b + a*c)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])) - (c^(3/2)*ArcTan 
[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[-b - a*c]])/(-b - a* 
c)^(3/2) + ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]]/a^(3/2)
 
3.4.58.3 Rubi [A] (warning: unable to verify)

Time = 0.39 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {2057, 2053, 2052, 25, 27, 382, 397, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2057

\(\displaystyle \int \frac {1}{x \left (\frac {a c+a d x^2+b}{c+d x^2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 2053

\(\displaystyle \frac {1}{2} \int \frac {1}{x^2 \left (\frac {a d x^2+b+a c}{d x^2+c}\right )^{3/2}}dx^2\)

\(\Big \downarrow \) 2052

\(\displaystyle -b d \int -\frac {1}{d x^4 \left (a-x^4\right ) \left (-c x^4+b+a c\right )}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}\)

\(\Big \downarrow \) 25

\(\displaystyle b d \int \frac {1}{d x^4 \left (a-x^4\right ) \left (-c x^4+b+a c\right )}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}\)

\(\Big \downarrow \) 27

\(\displaystyle b \int \frac {1}{x^4 \left (a-x^4\right ) \left (-c x^4+b+a c\right )}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}\)

\(\Big \downarrow \) 382

\(\displaystyle b \left (\frac {\int \frac {-c x^4+b+2 a c}{\left (a-x^4\right ) \left (-c x^4+b+a c\right )}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}}{a (a c+b)}-\frac {1}{a x^2 (a c+b)}\right )\)

\(\Big \downarrow \) 397

\(\displaystyle b \left (\frac {\frac {(a c+b) \int \frac {1}{a-x^4}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}}{b}-\frac {a c^2 \int \frac {1}{-c x^4+b+a c}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}}{b}}{a (a c+b)}-\frac {1}{a x^2 (a c+b)}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle b \left (\frac {\frac {(a c+b) \text {arctanh}\left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a}}\right )}{\sqrt {a} b}-\frac {a c^2 \int \frac {1}{-c x^4+b+a c}d\sqrt {\frac {a d x^2+b+a c}{d x^2+c}}}{b}}{a (a c+b)}-\frac {1}{a x^2 (a c+b)}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle b \left (\frac {\frac {(a c+b) \text {arctanh}\left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a}}\right )}{\sqrt {a} b}-\frac {a c^{3/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{b \sqrt {a c+b}}}{a (a c+b)}-\frac {1}{a x^2 (a c+b)}\right )\)

input
Int[1/(x*(a + b/(c + d*x^2))^(3/2)),x]
 
output
b*(-(1/(a*(b + a*c)*x^2)) + (((b + a*c)*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/( 
c + d*x^2)]/Sqrt[a]])/(Sqrt[a]*b) - (a*c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[(b + 
a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[b + a*c]])/(b*Sqrt[b + a*c]))/(a*(b + a* 
c)))
 

3.4.58.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 382
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/ 
(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b* 
x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m 
+ 2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[ 
b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 2052
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_S 
ymbol] :> With[{q = Denominator[p]}, Simp[q*e*(b*c - a*d)   Subst[Int[x^(q* 
(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a + b* 
x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] 
&& IntegerQ[m]
 

rule 2053
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.) 
))^(p_), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(e*( 
(a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p}, 
 x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2057
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u* 
((b + a*c + a*d*x^n)/(c + d*x^n))^p, x] /; FreeQ[{a, b, c, d, n, p}, x]
 
3.4.58.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1014\) vs. \(2(116)=232\).

Time = 0.13 (sec) , antiderivative size = 1015, normalized size of antiderivative = 7.57

method result size
default \(\text {Expression too large to display}\) \(1015\)

input
int(1/x/(a+b/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/2*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)/a*(-ln(1/2*(2*a*d^2*x^2+2 
*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d 
)/(a*d^2)^(1/2))*a^3*c^2*d^2*x^2-2*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^ 
4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a 
^2*b*c*d^2*x^2+(a*c^2+b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*a*c^2+2*(a*c^2+ 
b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*(a* 
d^2)^(1/2)*a^2*c*d*x^2-ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^ 
2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a^3*c^3*d-ln( 
1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2) 
*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a*b^2*d^2*x^2-3*ln(1/2*(2*a*d^2*x^2+2*a 
*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/ 
(a*d^2)^(1/2))*a^2*b*c^2*d+(a*c^2+b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*a*c 
^2+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b 
*c)/x^2)*(a*d^2)^(1/2)*a^2*c^2-3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+ 
2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a*b 
^2*c*d+(a*c^2+b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*a*c^2+2*(a*c^2+b*c)^(1/ 
2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*(a*d^2)^(1/ 
2)*a*b*c+2*((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*(a*d^2)^(1/2)*a*b*c-ln(1/2*(2 
*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^ 
2)^(1/2)+b*d)/(a*d^2)^(1/2))*b^3*d+2*((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*...
 
3.4.58.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 294 vs. \(2 (116) = 232\).

Time = 0.47 (sec) , antiderivative size = 1477, normalized size of antiderivative = 11.02 \[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(1/x/(a+b/(d*x^2+c))^(3/2),x, algorithm="fricas")
 
output
[1/4*((a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)*sqrt(a)*log(8*a^2*d^ 
2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x 
^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/( 
d*x^2 + c))) + (a^3*c*d*x^2 + a^3*c^2 + a^2*b*c)*sqrt(c/(a*c + b))*log(((8 
*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8 
*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 - 4*((2*a^2*c^2 + 3*a*b*c + b^2)*d^ 
2*x^4 + 2*a^2*c^4 + 4*a*b*c^3 + 2*b^2*c^2 + (4*a^2*c^3 + 7*a*b*c^2 + 3*b^2 
*c)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt(c/(a*c + b)))/x^4) - 
 4*(a*b*d*x^2 + a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*c^2 + 2 
*a^3*b*c + a^2*b^2 + (a^4*c + a^3*b)*d*x^2), -1/4*(2*(a^2*c^2 + (a^2*c + a 
*b)*d*x^2 + 2*a*b*c + b^2)*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqr 
t(-a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) - ( 
a^3*c*d*x^2 + a^3*c^2 + a^2*b*c)*sqrt(c/(a*c + b))*log(((8*a^2*c^2 + 8*a*b 
*c + b^2)*d^2*x^4 + 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3* 
a*b*c^2 + b^2*c)*d*x^2 - 4*((2*a^2*c^2 + 3*a*b*c + b^2)*d^2*x^4 + 2*a^2*c^ 
4 + 4*a*b*c^3 + 2*b^2*c^2 + (4*a^2*c^3 + 7*a*b*c^2 + 3*b^2*c)*d*x^2)*sqrt( 
(a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt(c/(a*c + b)))/x^4) + 4*(a*b*d*x^2 + 
a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*c^2 + 2*a^3*b*c + a^2*b 
^2 + (a^4*c + a^3*b)*d*x^2), 1/4*(2*(a^3*c*d*x^2 + a^3*c^2 + a^2*b*c)*sqrt 
(-c/(a*c + b))*arctan(1/2*((2*a*c + b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt((a...
 
3.4.58.6 Sympy [F]

\[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=\int \frac {1}{x \left (\frac {a c + a d x^{2} + b}{c + d x^{2}}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/x/(a+b/(d*x**2+c))**(3/2),x)
 
output
Integral(1/(x*((a*c + a*d*x**2 + b)/(c + d*x**2))**(3/2)), x)
 
3.4.58.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.50 \[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=\frac {c^{2} \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{2 \, \sqrt {{\left (a c + b\right )} c} {\left (a c + b\right )}} - \frac {b}{{\left (a^{2} c + a b\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}} - \frac {\log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right )}{2 \, a^{\frac {3}{2}}} \]

input
integrate(1/x/(a+b/(d*x^2+c))^(3/2),x, algorithm="maxima")
 
output
1/2*c^2*log((c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) - sqrt((a*c + b)*c))/ 
(c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) + sqrt((a*c + b)*c)))/(sqrt((a*c 
+ b)*c)*(a*c + b)) - b/((a^2*c + a*b)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c) 
)) - 1/2*log(-(sqrt(a) - sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(sqrt(a) + 
 sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))))/a^(3/2)
 
3.4.58.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/x/(a+b/(d*x^2+c))^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.4.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx=\int \frac {1}{x\,{\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2}} \,d x \]

input
int(1/(x*(a + b/(c + d*x^2))^(3/2)),x)
 
output
int(1/(x*(a + b/(c + d*x^2))^(3/2)), x)