3.6.8 \(\int (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}) (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}})^n \, dx\) [508]

3.6.8.1 Optimal result
3.6.8.2 Mathematica [A] (verified)
3.6.8.3 Rubi [A] (verified)
3.6.8.4 Maple [F]
3.6.8.5 Fricas [A] (verification not implemented)
3.6.8.6 Sympy [F(-2)]
3.6.8.7 Maxima [F]
3.6.8.8 Giac [F]
3.6.8.9 Mupad [F(-1)]

3.6.8.1 Optimal result

Integrand size = 54, antiderivative size = 239 \[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=\frac {\left (d^2-a f^2\right )^3 \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^{-3+n}}{8 e f^2 (3-n)}-\frac {3 \left (d^2-a f^2\right )^2 \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^{-1+n}}{8 e f^2 (1-n)}-\frac {3 \left (d^2-a f^2\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^{1+n}}{8 e f^2 (1+n)}+\frac {\left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^{3+n}}{8 e f^2 (3+n)} \]

output
1/8*(-a*f^2+d^2)^3*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^(-3+n)/e/f^ 
2/(3-n)-3/8*(-a*f^2+d^2)^2*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^(-1 
+n)/e/f^2/(1-n)-3/8*(-a*f^2+d^2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2 
))^(1+n)/e/f^2/(1+n)+1/8*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^(3+n) 
/e/f^2/(3+n)
 
3.6.8.2 Mathematica [A] (verified)

Time = 1.50 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.78 \[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=\frac {\left (d+e x+f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}\right )^{-3+n} \left (-\frac {\left (d^2-a f^2\right )^3}{-3+n}+\frac {3 \left (d^2-a f^2\right )^2 \left (d+e x+f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}\right )^2}{-1+n}-\frac {3 \left (d^2-a f^2\right ) \left (d+e x+f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}\right )^4}{1+n}+\frac {\left (d+e x+f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}\right )^6}{3+n}\right )}{8 e f^2} \]

input
Integrate[(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)*(d + e*x + f*Sqrt[a + (2*d*e 
*x)/f^2 + (e^2*x^2)/f^2])^n,x]
 
output
((d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^(-3 + n)*(-((d^2 - a*f^2)^3 
/(-3 + n)) + (3*(d^2 - a*f^2)^2*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^ 
2])^2)/(-1 + n) - (3*(d^2 - a*f^2)*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x)) 
/f^2])^4)/(1 + n) + (d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^6/(3 + n 
)))/(8*e*f^2)
 
3.6.8.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 217, normalized size of antiderivative = 0.91, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2546, 27, 244, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^n \, dx\)

\(\Big \downarrow \) 2546

\(\displaystyle \frac {2 \int -\frac {\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^{n-4} \left (d^2-a f^2-\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^2\right )^3}{16 e}d\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )}{f^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^{n-4} \left (d^2-a f^2-\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^2\right )^3d\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )}{8 e f^2}\)

\(\Big \downarrow \) 244

\(\displaystyle -\frac {\int \left (\left (d^2-a f^2\right )^3 \left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^{n-4}-3 \left (d^2-a f^2\right )^2 \left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^{n-2}+3 \left (d^2-a f^2\right ) \left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^n-\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^{n+2}\right )d\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )}{8 e f^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {-\frac {\left (d^2-a f^2\right )^3 \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^{n-3}}{3-n}+\frac {3 \left (d^2-a f^2\right )^2 \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^{n-1}}{1-n}+\frac {3 \left (d^2-a f^2\right ) \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^{n+1}}{n+1}-\frac {\left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^{n+3}}{n+3}}{8 e f^2}\)

input
Int[(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^ 
2 + (e^2*x^2)/f^2])^n,x]
 
output
-1/8*(-(((d^2 - a*f^2)^3*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f 
^2])^(-3 + n))/(3 - n)) + (3*(d^2 - a*f^2)^2*(d + e*x + f*Sqrt[a + (2*d*e* 
x)/f^2 + (e^2*x^2)/f^2])^(-1 + n))/(1 - n) + (3*(d^2 - a*f^2)*(d + e*x + f 
*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(1 + n))/(1 + n) - (d + e*x + f* 
Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(3 + n)/(3 + n))/(e*f^2)
 

3.6.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2546
Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*S 
qrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Simp[(2/f^(2*m) 
)*(i/c)^m   Subst[Int[x^n*((d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x + e 
*x^2)^(2*m + 1)/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1))), x], x, d + e*x + f*S 
qrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n}, x] && Eq 
Q[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && IntegerQ[2*m 
] && (IntegerQ[m] || GtQ[i/c, 0])
 
3.6.8.4 Maple [F]

\[\int \left (a +\frac {2 d e x}{f^{2}}+\frac {e^{2} x^{2}}{f^{2}}\right ) {\left (d +e x +f \sqrt {a +\frac {2 d e x}{f^{2}}+\frac {e^{2} x^{2}}{f^{2}}}\right )}^{n}d x\]

input
int((a+2*d*e*x/f^2+e^2*x^2/f^2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2) 
)^n,x)
 
output
int((a+2*d*e*x/f^2+e^2*x^2/f^2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2) 
)^n,x)
 
3.6.8.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.00 \[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=-\frac {{\left (3 \, a d f^{2} n^{2} - 9 \, a d f^{2} + 3 \, {\left (e^{3} n^{2} - e^{3}\right )} x^{3} + 6 \, d^{3} + 9 \, {\left (d e^{2} n^{2} - d e^{2}\right )} x^{2} - 3 \, {\left (3 \, a e f^{2} - {\left (a e f^{2} + 2 \, d^{2} e\right )} n^{2}\right )} x - {\left (a f^{3} n^{3} + {\left (e^{2} f n^{3} - e^{2} f n\right )} x^{2} - {\left (7 \, a f^{3} - 6 \, d^{2} f\right )} n + 2 \, {\left (d e f n^{3} - d e f n\right )} x\right )} \sqrt {\frac {e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}}\right )} {\left (e x + f \sqrt {\frac {e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n}}{e f^{2} n^{4} - 10 \, e f^{2} n^{2} + 9 \, e f^{2}} \]

input
integrate((a+2*d*e*x/f^2+e^2*x^2/f^2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2) 
^(1/2))^n,x, algorithm="fricas")
 
output
-(3*a*d*f^2*n^2 - 9*a*d*f^2 + 3*(e^3*n^2 - e^3)*x^3 + 6*d^3 + 9*(d*e^2*n^2 
 - d*e^2)*x^2 - 3*(3*a*e*f^2 - (a*e*f^2 + 2*d^2*e)*n^2)*x - (a*f^3*n^3 + ( 
e^2*f*n^3 - e^2*f*n)*x^2 - (7*a*f^3 - 6*d^2*f)*n + 2*(d*e*f*n^3 - d*e*f*n) 
*x)*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2))*(e*x + f*sqrt((e^2*x^2 + a*f^2 
+ 2*d*e*x)/f^2) + d)^n/(e*f^2*n^4 - 10*e*f^2*n^2 + 9*e*f^2)
 
3.6.8.6 Sympy [F(-2)]

Exception generated. \[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=\text {Exception raised: HeuristicGCDFailed} \]

input
integrate((a+2*d*e*x/f**2+e**2*x**2/f**2)*(d+e*x+f*(a+2*d*e*x/f**2+e**2*x* 
*2/f**2)**(1/2))**n,x)
 
output
Exception raised: HeuristicGCDFailed >> no luck
 
3.6.8.7 Maxima [F]

\[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=\int { {\left (\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}\right )} {\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n} \,d x } \]

input
integrate((a+2*d*e*x/f^2+e^2*x^2/f^2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2) 
^(1/2))^n,x, algorithm="maxima")
 
output
integrate((e^2*x^2/f^2 + a + 2*d*e*x/f^2)*(e*x + sqrt(e^2*x^2/f^2 + a + 2* 
d*e*x/f^2)*f + d)^n, x)
 
3.6.8.8 Giac [F]

\[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=\int { {\left (\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}\right )} {\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n} \,d x } \]

input
integrate((a+2*d*e*x/f^2+e^2*x^2/f^2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2) 
^(1/2))^n,x, algorithm="giac")
 
output
integrate((e^2*x^2/f^2 + a + 2*d*e*x/f^2)*(e*x + sqrt(e^2*x^2/f^2 + a + 2* 
d*e*x/f^2)*f + d)^n, x)
 
3.6.8.9 Mupad [F(-1)]

Timed out. \[ \int \left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right ) \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n \, dx=\int {\left (d+f\,\sqrt {a+\frac {e^2\,x^2}{f^2}+\frac {2\,d\,e\,x}{f^2}}+e\,x\right )}^n\,\left (a+\frac {e^2\,x^2}{f^2}+\frac {2\,d\,e\,x}{f^2}\right ) \,d x \]

input
int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n*(a + (e^2*x^ 
2)/f^2 + (2*d*e*x)/f^2),x)
 
output
int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n*(a + (e^2*x^ 
2)/f^2 + (2*d*e*x)/f^2), x)