3.6.88 \(\int (a+\frac {b}{x})^m (c+d x)^2 \, dx\) [588]

3.6.88.1 Optimal result
3.6.88.2 Mathematica [A] (verified)
3.6.88.3 Rubi [A] (verified)
3.6.88.4 Maple [F]
3.6.88.5 Fricas [F]
3.6.88.6 Sympy [C] (verification not implemented)
3.6.88.7 Maxima [F]
3.6.88.8 Giac [F]
3.6.88.9 Mupad [F(-1)]

3.6.88.1 Optimal result

Integrand size = 17, antiderivative size = 138 \[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\frac {d (6 a c-b d (2-m)) \left (a+\frac {b}{x}\right )^{1+m} x^2}{6 a^2}+\frac {d^2 \left (a+\frac {b}{x}\right )^{1+m} x^3}{3 a}-\frac {b \left (6 a^2 c^2-6 a b c d (1-m)+b^2 d^2 \left (2-3 m+m^2\right )\right ) \left (a+\frac {b}{x}\right )^{1+m} \operatorname {Hypergeometric2F1}\left (2,1+m,2+m,1+\frac {b}{a x}\right )}{6 a^4 (1+m)} \]

output
1/6*d*(6*a*c-b*d*(2-m))*(a+b/x)^(1+m)*x^2/a^2+1/3*d^2*(a+b/x)^(1+m)*x^3/a- 
1/6*b*(6*a^2*c^2-6*a*b*c*d*(1-m)+b^2*d^2*(m^2-3*m+2))*(a+b/x)^(1+m)*hyperg 
eom([2, 1+m],[2+m],1+b/a/x)/a^4/(1+m)
 
3.6.88.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.81 \[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\frac {\left (a+\frac {b}{x}\right )^m (b+a x) \left (a^2 d (1+m) x^2 (b d (-2+m)+2 a (3 c+d x))-b \left (6 a^2 c^2+6 a b c d (-1+m)+b^2 d^2 \left (2-3 m+m^2\right )\right ) \operatorname {Hypergeometric2F1}\left (2,1+m,2+m,1+\frac {b}{a x}\right )\right )}{6 a^4 (1+m) x} \]

input
Integrate[(a + b/x)^m*(c + d*x)^2,x]
 
output
((a + b/x)^m*(b + a*x)*(a^2*d*(1 + m)*x^2*(b*d*(-2 + m) + 2*a*(3*c + d*x)) 
 - b*(6*a^2*c^2 + 6*a*b*c*d*(-1 + m) + b^2*d^2*(2 - 3*m + m^2))*Hypergeome 
tric2F1[2, 1 + m, 2 + m, 1 + b/(a*x)]))/(6*a^4*(1 + m)*x)
 
3.6.88.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {941, 948, 100, 87, 75}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^2 \left (a+\frac {b}{x}\right )^m \, dx\)

\(\Big \downarrow \) 941

\(\displaystyle \int x^2 \left (\frac {c}{x}+d\right )^2 \left (a+\frac {b}{x}\right )^mdx\)

\(\Big \downarrow \) 948

\(\displaystyle -\int \left (a+\frac {b}{x}\right )^m \left (\frac {c}{x}+d\right )^2 x^4d\frac {1}{x}\)

\(\Big \downarrow \) 100

\(\displaystyle \frac {d^2 x^3 \left (a+\frac {b}{x}\right )^{m+1}}{3 a}-\frac {\int \left (a+\frac {b}{x}\right )^m \left (\frac {3 a c^2}{x}+d (6 a c-b d (2-m))\right ) x^3d\frac {1}{x}}{3 a}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {d^2 x^3 \left (a+\frac {b}{x}\right )^{m+1}}{3 a}-\frac {\frac {\left (6 a^2 c^2-b d (1-m) (6 a c-b d (2-m))\right ) \int \left (a+\frac {b}{x}\right )^m x^2d\frac {1}{x}}{2 a}-\frac {d x^2 \left (a+\frac {b}{x}\right )^{m+1} (6 a c-b d (2-m))}{2 a}}{3 a}\)

\(\Big \downarrow \) 75

\(\displaystyle \frac {d^2 x^3 \left (a+\frac {b}{x}\right )^{m+1}}{3 a}-\frac {\frac {b \left (a+\frac {b}{x}\right )^{m+1} \left (6 a^2 c^2-b d (1-m) (6 a c-b d (2-m))\right ) \operatorname {Hypergeometric2F1}\left (2,m+1,m+2,\frac {b}{a x}+1\right )}{2 a^3 (m+1)}-\frac {d x^2 \left (a+\frac {b}{x}\right )^{m+1} (6 a c-b d (2-m))}{2 a}}{3 a}\)

input
Int[(a + b/x)^m*(c + d*x)^2,x]
 
output
(d^2*(a + b/x)^(1 + m)*x^3)/(3*a) - (-1/2*(d*(6*a*c - b*d*(2 - m))*(a + b/ 
x)^(1 + m)*x^2)/a + (b*(6*a^2*c^2 - b*d*(6*a*c - b*d*(2 - m))*(1 - m))*(a 
+ b/x)^(1 + m)*Hypergeometric2F1[2, 1 + m, 2 + m, 1 + b/(a*x)])/(2*a^3*(1 
+ m)))/(3*a)
 

3.6.88.3.1 Defintions of rubi rules used

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 100
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[(b*c - a*d)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d 
*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1))   Int[(c + d*x)^ 
(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*( 
p + 1)) - 2*a*b*d*(d*e*(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1] || (EqQ[n 
 + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))
 

rule 941
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Sym 
bol] :> Int[(a + b*x^n)^p*((d + c*x^n)^q/x^(n*q)), x] /; FreeQ[{a, b, c, d, 
 n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] ||  !IntegerQ[p])
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 
3.6.88.4 Maple [F]

\[\int \left (a +\frac {b}{x}\right )^{m} \left (d x +c \right )^{2}d x\]

input
int((a+b/x)^m*(d*x+c)^2,x)
 
output
int((a+b/x)^m*(d*x+c)^2,x)
 
3.6.88.5 Fricas [F]

\[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\int { {\left (d x + c\right )}^{2} {\left (a + \frac {b}{x}\right )}^{m} \,d x } \]

input
integrate((a+b/x)^m*(d*x+c)^2,x, algorithm="fricas")
 
output
integral((d^2*x^2 + 2*c*d*x + c^2)*((a*x + b)/x)^m, x)
 
3.6.88.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 11.74 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.85 \[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\frac {b^{m} c^{2} x^{1 - m} \Gamma \left (1 - m\right ) {{}_{2}F_{1}\left (\begin {matrix} - m, 1 - m \\ 2 - m \end {matrix}\middle | {\frac {a x e^{i \pi }}{b}} \right )}}{\Gamma \left (2 - m\right )} + \frac {2 b^{m} c d x^{2 - m} \Gamma \left (2 - m\right ) {{}_{2}F_{1}\left (\begin {matrix} - m, 2 - m \\ 3 - m \end {matrix}\middle | {\frac {a x e^{i \pi }}{b}} \right )}}{\Gamma \left (3 - m\right )} + \frac {b^{m} d^{2} x^{3 - m} \Gamma \left (3 - m\right ) {{}_{2}F_{1}\left (\begin {matrix} - m, 3 - m \\ 4 - m \end {matrix}\middle | {\frac {a x e^{i \pi }}{b}} \right )}}{\Gamma \left (4 - m\right )} \]

input
integrate((a+b/x)**m*(d*x+c)**2,x)
 
output
b**m*c**2*x**(1 - m)*gamma(1 - m)*hyper((-m, 1 - m), (2 - m,), a*x*exp_pol 
ar(I*pi)/b)/gamma(2 - m) + 2*b**m*c*d*x**(2 - m)*gamma(2 - m)*hyper((-m, 2 
 - m), (3 - m,), a*x*exp_polar(I*pi)/b)/gamma(3 - m) + b**m*d**2*x**(3 - m 
)*gamma(3 - m)*hyper((-m, 3 - m), (4 - m,), a*x*exp_polar(I*pi)/b)/gamma(4 
 - m)
 
3.6.88.7 Maxima [F]

\[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\int { {\left (d x + c\right )}^{2} {\left (a + \frac {b}{x}\right )}^{m} \,d x } \]

input
integrate((a+b/x)^m*(d*x+c)^2,x, algorithm="maxima")
 
output
integrate((d*x + c)^2*(a + b/x)^m, x)
 
3.6.88.8 Giac [F]

\[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\int { {\left (d x + c\right )}^{2} {\left (a + \frac {b}{x}\right )}^{m} \,d x } \]

input
integrate((a+b/x)^m*(d*x+c)^2,x, algorithm="giac")
 
output
integrate((d*x + c)^2*(a + b/x)^m, x)
 
3.6.88.9 Mupad [F(-1)]

Timed out. \[ \int \left (a+\frac {b}{x}\right )^m (c+d x)^2 \, dx=\int {\left (a+\frac {b}{x}\right )}^m\,{\left (c+d\,x\right )}^2 \,d x \]

input
int((a + b/x)^m*(c + d*x)^2,x)
 
output
int((a + b/x)^m*(c + d*x)^2, x)