3.7.13 \(\int x (a+b x+c x^2)^m (d+e x+f x^2+g x^3)^n (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5) \, dx\) [613]

3.7.13.1 Optimal result
3.7.13.2 Mathematica [A] (verified)
3.7.13.3 Rubi [A] (verified)
3.7.13.4 Maple [A] (verified)
3.7.13.5 Fricas [F(-1)]
3.7.13.6 Sympy [F(-1)]
3.7.13.7 Maxima [B] (verification not implemented)
3.7.13.8 Giac [F(-1)]
3.7.13.9 Mupad [F(-1)]

3.7.13.1 Optimal result

Integrand size = 176, antiderivative size = 37 \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx=x^2 \left (a+b x+c x^2\right )^{1+m} \left (d+e x+f x^2+g x^3\right )^{1+n} \]

output
x^2*(c*x^2+b*x+a)^(1+m)*(g*x^3+f*x^2+e*x+d)^(1+n)
 
3.7.13.2 Mathematica [A] (verified)

Time = 3.89 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.92 \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx=x^2 (a+x (b+c x))^{1+m} (d+x (e+x (f+g x)))^{1+n} \]

input
Integrate[x*(a + b*x + c*x^2)^m*(d + e*x + f*x^2 + g*x^3)^n*(2*a*d + (3*b* 
d + 3*a*e + b*d*m + a*e*n)*x + (4*c*d + 4*b*e + 4*a*f + 2*c*d*m + b*e*m + 
b*e*n + 2*a*f*n)*x^2 + (5*c*e + 5*b*f + 5*a*g + 2*c*e*m + b*f*m + c*e*n + 
2*b*f*n + 3*a*g*n)*x^3 + (6*c*f + 6*b*g + 2*c*f*m + b*g*m + 2*c*f*n + 3*b* 
g*n)*x^4 + c*g*(7 + 2*m + 3*n)*x^5),x]
 
output
x^2*(a + x*(b + c*x))^(1 + m)*(d + x*(e + x*(f + g*x)))^(1 + n)
 
3.7.13.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {2023}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (x^2 (2 a f n+4 a f+b e m+b e n+4 b e+2 c d m+4 c d)+x^3 (3 a g n+5 a g+b f m+2 b f n+5 b f+2 c e m+c e n+5 c e)+x (a e n+3 a e+b d m+3 b d)+2 a d+x^4 (b g m+3 b g n+6 b g+2 c f m+2 c f n+6 c f)+c g x^5 (2 m+3 n+7)\right ) \, dx\)

\(\Big \downarrow \) 2023

\(\displaystyle x^2 \left (a+b x+c x^2\right )^{m+1} \left (d+e x+f x^2+g x^3\right )^{n+1}\)

input
Int[x*(a + b*x + c*x^2)^m*(d + e*x + f*x^2 + g*x^3)^n*(2*a*d + (3*b*d + 3* 
a*e + b*d*m + a*e*n)*x + (4*c*d + 4*b*e + 4*a*f + 2*c*d*m + b*e*m + b*e*n 
+ 2*a*f*n)*x^2 + (5*c*e + 5*b*f + 5*a*g + 2*c*e*m + b*f*m + c*e*n + 2*b*f* 
n + 3*a*g*n)*x^3 + (6*c*f + 6*b*g + 2*c*f*m + b*g*m + 2*c*f*n + 3*b*g*n)*x 
^4 + c*g*(7 + 2*m + 3*n)*x^5),x]
 
output
x^2*(a + b*x + c*x^2)^(1 + m)*(d + e*x + f*x^2 + g*x^3)^(1 + n)
 

3.7.13.3.1 Defintions of rubi rules used

rule 2023
Int[(Pp_)*(Qq_)^(m_.)*(Rr_)^(n_.), x_Symbol] :> With[{p = Expon[Pp, x], q = 
 Expon[Qq, x], r = Expon[Rr, x]}, Simp[Coeff[Pp, x, p]*x^(p - q - r + 1)*Qq 
^(m + 1)*(Rr^(n + 1)/((p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x, r])) 
, x] /; NeQ[p + m*q + n*r + 1, 0] && EqQ[(p + m*q + n*r + 1)*Coeff[Qq, x, q 
]*Coeff[Rr, x, r]*Pp, Coeff[Pp, x, p]*x^(p - q - r)*((p - q - r + 1)*Qq*Rr 
+ (m + 1)*x*Rr*D[Qq, x] + (n + 1)*x*Qq*D[Rr, x])]] /; FreeQ[{m, n}, x] && P 
olyQ[Pp, x] && PolyQ[Qq, x] && PolyQ[Rr, x] && NeQ[m, -1] && NeQ[n, -1]
 
3.7.13.4 Maple [A] (verified)

Time = 56.81 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.03

method result size
gosper \(x^{2} \left (c \,x^{2}+b x +a \right )^{1+m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{1+n}\) \(38\)
risch \(x^{2} \left (c g \,x^{5}+b g \,x^{4}+c f \,x^{4}+a g \,x^{3}+b f \,x^{3}+c \,x^{3} e +a f \,x^{2}+e \,x^{2} b +x^{2} c d +a e x +b d x +a d \right ) \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n}\) \(100\)
parallelrisch \(\frac {x^{7} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} c^{2} g^{2}+x^{6} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} b c \,g^{2}+x^{6} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} c^{2} f g +x^{5} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} a c \,g^{2}+x^{5} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} b c f g +x^{5} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} c^{2} e g +x^{4} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} a c f g +x^{4} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} b c e g +x^{4} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} c^{2} d g +x^{3} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} a c e g +x^{3} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} b c d g +x^{2} \left (c \,x^{2}+b x +a \right )^{m} \left (g \,x^{3}+f \,x^{2}+e x +d \right )^{n} a c d g}{g c}\) \(460\)

input
int(x*(c*x^2+b*x+a)^m*(g*x^3+f*x^2+e*x+d)^n*(2*a*d+(a*e*n+b*d*m+3*a*e+3*b* 
d)*x+(2*a*f*n+b*e*m+b*e*n+2*c*d*m+4*a*f+4*b*e+4*c*d)*x^2+(3*a*g*n+b*f*m+2* 
b*f*n+2*c*e*m+c*e*n+5*a*g+5*b*f+5*c*e)*x^3+(b*g*m+3*b*g*n+2*c*f*m+2*c*f*n+ 
6*b*g+6*c*f)*x^4+c*g*(7+2*m+3*n)*x^5),x,method=_RETURNVERBOSE)
 
output
x^2*(c*x^2+b*x+a)^(1+m)*(g*x^3+f*x^2+e*x+d)^(1+n)
 
3.7.13.5 Fricas [F(-1)]

Timed out. \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx=\text {Timed out} \]

input
integrate(x*(c*x^2+b*x+a)^m*(g*x^3+f*x^2+e*x+d)^n*(2*a*d+(a*e*n+b*d*m+3*a* 
e+3*b*d)*x+(2*a*f*n+b*e*m+b*e*n+2*c*d*m+4*a*f+4*b*e+4*c*d)*x^2+(3*a*g*n+b* 
f*m+2*b*f*n+2*c*e*m+c*e*n+5*a*g+5*b*f+5*c*e)*x^3+(b*g*m+3*b*g*n+2*c*f*m+2* 
c*f*n+6*b*g+6*c*f)*x^4+c*g*(7+2*m+3*n)*x^5),x, algorithm="fricas")
 
output
Timed out
 
3.7.13.6 Sympy [F(-1)]

Timed out. \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx=\text {Timed out} \]

input
integrate(x*(c*x**2+b*x+a)**m*(g*x**3+f*x**2+e*x+d)**n*(2*a*d+(a*e*n+b*d*m 
+3*a*e+3*b*d)*x+(2*a*f*n+b*e*m+b*e*n+2*c*d*m+4*a*f+4*b*e+4*c*d)*x**2+(3*a* 
g*n+b*f*m+2*b*f*n+2*c*e*m+c*e*n+5*a*g+5*b*f+5*c*e)*x**3+(b*g*m+3*b*g*n+2*c 
*f*m+2*c*f*n+6*b*g+6*c*f)*x**4+c*g*(7+2*m+3*n)*x**5),x)
 
output
Timed out
 
3.7.13.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 97 vs. \(2 (37) = 74\).

Time = 0.28 (sec) , antiderivative size = 97, normalized size of antiderivative = 2.62 \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx={\left (c g x^{7} + {\left (c f + b g\right )} x^{6} + {\left (c e + b f + a g\right )} x^{5} + {\left (c d + b e + a f\right )} x^{4} + a d x^{2} + {\left (b d + a e\right )} x^{3}\right )} e^{\left (n \log \left (g x^{3} + f x^{2} + e x + d\right ) + m \log \left (c x^{2} + b x + a\right )\right )} \]

input
integrate(x*(c*x^2+b*x+a)^m*(g*x^3+f*x^2+e*x+d)^n*(2*a*d+(a*e*n+b*d*m+3*a* 
e+3*b*d)*x+(2*a*f*n+b*e*m+b*e*n+2*c*d*m+4*a*f+4*b*e+4*c*d)*x^2+(3*a*g*n+b* 
f*m+2*b*f*n+2*c*e*m+c*e*n+5*a*g+5*b*f+5*c*e)*x^3+(b*g*m+3*b*g*n+2*c*f*m+2* 
c*f*n+6*b*g+6*c*f)*x^4+c*g*(7+2*m+3*n)*x^5),x, algorithm="maxima")
 
output
(c*g*x^7 + (c*f + b*g)*x^6 + (c*e + b*f + a*g)*x^5 + (c*d + b*e + a*f)*x^4 
 + a*d*x^2 + (b*d + a*e)*x^3)*e^(n*log(g*x^3 + f*x^2 + e*x + d) + m*log(c* 
x^2 + b*x + a))
 
3.7.13.8 Giac [F(-1)]

Timed out. \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx=\text {Timed out} \]

input
integrate(x*(c*x^2+b*x+a)^m*(g*x^3+f*x^2+e*x+d)^n*(2*a*d+(a*e*n+b*d*m+3*a* 
e+3*b*d)*x+(2*a*f*n+b*e*m+b*e*n+2*c*d*m+4*a*f+4*b*e+4*c*d)*x^2+(3*a*g*n+b* 
f*m+2*b*f*n+2*c*e*m+c*e*n+5*a*g+5*b*f+5*c*e)*x^3+(b*g*m+3*b*g*n+2*c*f*m+2* 
c*f*n+6*b*g+6*c*f)*x^4+c*g*(7+2*m+3*n)*x^5),x, algorithm="giac")
 
output
Timed out
 
3.7.13.9 Mupad [F(-1)]

Timed out. \[ \int x \left (a+b x+c x^2\right )^m \left (d+e x+f x^2+g x^3\right )^n \left (2 a d+(3 b d+3 a e+b d m+a e n) x+(4 c d+4 b e+4 a f+2 c d m+b e m+b e n+2 a f n) x^2+(5 c e+5 b f+5 a g+2 c e m+b f m+c e n+2 b f n+3 a g n) x^3+(6 c f+6 b g+2 c f m+b g m+2 c f n+3 b g n) x^4+c g (7+2 m+3 n) x^5\right ) \, dx=\text {Hanged} \]

input
int(x*(a + b*x + c*x^2)^m*(d + e*x + f*x^2 + g*x^3)^n*(2*a*d + x^4*(6*b*g 
+ 6*c*f + b*g*m + 2*c*f*m + 3*b*g*n + 2*c*f*n) + x^2*(4*a*f + 4*b*e + 4*c* 
d + b*e*m + 2*c*d*m + 2*a*f*n + b*e*n) + x*(3*a*e + 3*b*d + b*d*m + a*e*n) 
 + x^3*(5*a*g + 5*b*f + 5*c*e + b*f*m + 2*c*e*m + 3*a*g*n + 2*b*f*n + c*e* 
n) + c*g*x^5*(2*m + 3*n + 7)),x)
 
output
\text{Hanged}