3.7.57 \(\int \frac {(a+b \sqrt {c+d x})^p}{x} \, dx\) [657]

3.7.57.1 Optimal result
3.7.57.2 Mathematica [A] (verified)
3.7.57.3 Rubi [A] (verified)
3.7.57.4 Maple [F]
3.7.57.5 Fricas [F]
3.7.57.6 Sympy [F]
3.7.57.7 Maxima [F]
3.7.57.8 Giac [F]
3.7.57.9 Mupad [F(-1)]

3.7.57.1 Optimal result

Integrand size = 19, antiderivative size = 139 \[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=-\frac {\left (a+b \sqrt {c+d x}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x}}{a-b \sqrt {c}}\right )}{\left (a-b \sqrt {c}\right ) (1+p)}-\frac {\left (a+b \sqrt {c+d x}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x}}{a+b \sqrt {c}}\right )}{\left (a+b \sqrt {c}\right ) (1+p)} \]

output
-hypergeom([1, p+1],[2+p],(a+b*(d*x+c)^(1/2))/(a-b*c^(1/2)))*(a+b*(d*x+c)^ 
(1/2))^(p+1)/(p+1)/(a-b*c^(1/2))-hypergeom([1, p+1],[2+p],(a+b*(d*x+c)^(1/ 
2))/(a+b*c^(1/2)))*(a+b*(d*x+c)^(1/2))^(p+1)/(p+1)/(a+b*c^(1/2))
 
3.7.57.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.98 \[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=-\frac {\left (a+b \sqrt {c+d x}\right )^{1+p} \left (\left (a+b \sqrt {c}\right ) \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x}}{a-b \sqrt {c}}\right )+\left (a-b \sqrt {c}\right ) \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {a+b \sqrt {c+d x}}{a+b \sqrt {c}}\right )\right )}{\left (a-b \sqrt {c}\right ) \left (a+b \sqrt {c}\right ) (1+p)} \]

input
Integrate[(a + b*Sqrt[c + d*x])^p/x,x]
 
output
-(((a + b*Sqrt[c + d*x])^(1 + p)*((a + b*Sqrt[c])*Hypergeometric2F1[1, 1 + 
 p, 2 + p, (a + b*Sqrt[c + d*x])/(a - b*Sqrt[c])] + (a - b*Sqrt[c])*Hyperg 
eometric2F1[1, 1 + p, 2 + p, (a + b*Sqrt[c + d*x])/(a + b*Sqrt[c])]))/((a 
- b*Sqrt[c])*(a + b*Sqrt[c])*(1 + p)))
 
3.7.57.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {896, 25, 1732, 615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx\)

\(\Big \downarrow \) 896

\(\displaystyle \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{d x}d(c+d x)\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\frac {\left (a+b \sqrt {c+d x}\right )^p}{d x}d(c+d x)\)

\(\Big \downarrow \) 1732

\(\displaystyle -2 \int -\frac {\sqrt {c+d x} \left (a+b \sqrt {c+d x}\right )^p}{d x}d\sqrt {c+d x}\)

\(\Big \downarrow \) 615

\(\displaystyle -2 \int \left (\frac {\left (a+b \sqrt {c+d x}\right )^p}{2 \left (-c+\sqrt {c}-d x\right )}-\frac {\left (a+b \sqrt {c+d x}\right )^p}{2 \left (\sqrt {c}+\sqrt {c+d x}\right )}\right )d\sqrt {c+d x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -2 \left (\frac {\left (a+b \sqrt {c+d x}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {a+b \sqrt {c+d x}}{a-b \sqrt {c}}\right )}{2 (p+1) \left (a-b \sqrt {c}\right )}+\frac {\left (a+b \sqrt {c+d x}\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {a+b \sqrt {c+d x}}{a+b \sqrt {c}}\right )}{2 (p+1) \left (a+b \sqrt {c}\right )}\right )\)

input
Int[(a + b*Sqrt[c + d*x])^p/x,x]
 
output
-2*(((a + b*Sqrt[c + d*x])^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (a + 
 b*Sqrt[c + d*x])/(a - b*Sqrt[c])])/(2*(a - b*Sqrt[c])*(1 + p)) + ((a + b* 
Sqrt[c + d*x])^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (a + b*Sqrt[c + 
d*x])/(a + b*Sqrt[c])])/(2*(a + b*Sqrt[c])*(1 + p)))
 

3.7.57.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 896
Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coeff 
icient[v, x, 0], d = Coefficient[v, x, 1]}, Simp[1/d^(m + 1)   Subst[Int[Si 
mplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0]] /; 
 FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]
 

rule 1732
Int[((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symb 
ol] :> With[{g = Denominator[n]}, Simp[g   Subst[Int[x^(g - 1)*(d + e*x^(g* 
n))^q*(a + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, c, d, e, p, q} 
, x] && EqQ[n2, 2*n] && FractionQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.7.57.4 Maple [F]

\[\int \frac {\left (a +b \sqrt {d x +c}\right )^{p}}{x}d x\]

input
int((a+b*(d*x+c)^(1/2))^p/x,x)
 
output
int((a+b*(d*x+c)^(1/2))^p/x,x)
 
3.7.57.5 Fricas [F]

\[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=\int { \frac {{\left (\sqrt {d x + c} b + a\right )}^{p}}{x} \,d x } \]

input
integrate((a+b*(d*x+c)^(1/2))^p/x,x, algorithm="fricas")
 
output
integral((sqrt(d*x + c)*b + a)^p/x, x)
 
3.7.57.6 Sympy [F]

\[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=\int \frac {\left (a + b \sqrt {c + d x}\right )^{p}}{x}\, dx \]

input
integrate((a+b*(d*x+c)**(1/2))**p/x,x)
 
output
Integral((a + b*sqrt(c + d*x))**p/x, x)
 
3.7.57.7 Maxima [F]

\[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=\int { \frac {{\left (\sqrt {d x + c} b + a\right )}^{p}}{x} \,d x } \]

input
integrate((a+b*(d*x+c)^(1/2))^p/x,x, algorithm="maxima")
 
output
integrate((sqrt(d*x + c)*b + a)^p/x, x)
 
3.7.57.8 Giac [F]

\[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=\int { \frac {{\left (\sqrt {d x + c} b + a\right )}^{p}}{x} \,d x } \]

input
integrate((a+b*(d*x+c)^(1/2))^p/x,x, algorithm="giac")
 
output
integrate((sqrt(d*x + c)*b + a)^p/x, x)
 
3.7.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \sqrt {c+d x}\right )^p}{x} \, dx=\int \frac {{\left (a+b\,\sqrt {c+d\,x}\right )}^p}{x} \,d x \]

input
int((a + b*(c + d*x)^(1/2))^p/x,x)
 
output
int((a + b*(c + d*x)^(1/2))^p/x, x)