3.8.84 \(\int \frac {1}{(a+8 x-8 x^2+4 x^3-x^4)^{3/2}} \, dx\) [784]

3.8.84.1 Optimal result
3.8.84.2 Mathematica [B] (verified)
3.8.84.3 Rubi [A] (verified)
3.8.84.4 Maple [B] (warning: unable to verify)
3.8.84.5 Fricas [F]
3.8.84.6 Sympy [F]
3.8.84.7 Maxima [F]
3.8.84.8 Giac [F]
3.8.84.9 Mupad [F(-1)]

3.8.84.1 Optimal result

Integrand size = 24, antiderivative size = 437 \[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\frac {\left (5+a+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) (-1+x)}{2 (3+a) (4+a) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) E\left (\arctan \left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{2 (3+a) (4+a) \sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) \operatorname {EllipticF}\left (\arctan \left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right ),-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{2 (4+a) \sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}} \]

output
1/2*(5+a+(-1+x)^2)*(-1+x)/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)-1/2 
*(-1+x)*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))/(a^2+7*a+12)/(3+a-2*( 
-1+x)^2-(-1+x)^4)^(1/2)+1/2*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+ 
x)^2/(1+(4+a)^(1/2)))^(1/2)*EllipticF((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+ 
x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-1 
+x)^2/(1-(4+a)^(1/2)))*(1+(4+a)^(1/2))^(1/2)/(4+a)/(3+a-2*(-1+x)^2-(-1+x)^ 
4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2) 
+1/2*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^( 
1/2)*EllipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^( 
1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))* 
(1-(4+a)^(1/2))*(1+(4+a)^(1/2))^(1/2)/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-1+x)^ 
4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)
 
3.8.84.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(3526\) vs. \(2(437)=874\).

Time = 16.07 (sec) , antiderivative size = 3526, normalized size of antiderivative = 8.07 \[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\text {Result too large to show} \]

input
Integrate[(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(-3/2),x]
 
output
((6 + a - 8*x - a*x + 3*x^2 - x^3)*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4])/(2 
*(3 + a)*(4 + a)*(-a - 8*x + 8*x^2 - 4*x^3 + x^4)) + ((4*(-Sqrt[-1 - Sqrt[ 
4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt 
[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[ 
4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqr 
t[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sq 
rt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - 
Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + 
 Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 
 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 
 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt 
[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] 
+ x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sq 
rt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + 
 Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt 
[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt 
[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (2*a*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 
 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqr 
t[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((S 
qrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 ...
 
3.8.84.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 509, normalized size of antiderivative = 1.16, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2458, 1405, 27, 1514, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a-x^4+4 x^3-8 x^2+8 x\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2458

\(\displaystyle \int \frac {1}{\left (a-(x-1)^4-2 (x-1)^2+3\right )^{3/2}}d(x-1)\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}-\frac {\int -\frac {2 \left (-(x-1)^2+a+3\right )}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)}{4 \left (a^2+7 a+12\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-(x-1)^2+a+3}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)}{2 \left (a^2+7 a+12\right )}+\frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 1514

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \int \frac {-(x-1)^2+a+3}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left ((a+3) \int \frac {1}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)-\int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {(a+3) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\left (1-\sqrt {a+4}\right ) \int \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\left (\frac {(x-1)^2}{\sqrt {a+4}+1}+1\right )^{3/2}}d(x-1)+\frac {(a+3) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {(a+3) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}+\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} E\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

input
Int[(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(-3/2),x]
 
output
((5 + a + (-1 + x)^2)*(-1 + x))/(2*(12 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 + x 
)^2 - (-1 + x)^4]) + (Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*Sqrt[1 + (-1 
+ x)^2/(1 + Sqrt[4 + a])]*(-(((1 - Sqrt[4 + a])*Sqrt[1 + (-1 + x)^2/(1 - S 
qrt[4 + a])]*(-1 + x))/Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])]) + ((1 - Sqr 
t[4 + a])*Sqrt[1 + Sqrt[4 + a]]*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*Ell 
ipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[ 
4 + a])])/(Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sq 
rt[4 + a]))]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])]) + ((3 + a)*Sqrt[1 + S 
qrt[4 + a]]*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*EllipticF[ArcTan[(-1 + 
x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(Sqrt[(1 + 
 (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[1 
+ (-1 + x)^2/(1 + Sqrt[4 + a])])))/(2*(12 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 
+ x)^2 - (-1 + x)^4])
 

3.8.84.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1514
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt 
[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4])   Int[(d + e*x^2)/(Sqrt[1 
+ 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, 
c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]
 

rule 2458
Int[(Pn_)^(p_.), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1]/(Exp 
on[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x -> x 
- S, x]^p, x], x, x + S] /; BinomialQ[Pn /. x -> x - S, x] || (IntegerQ[Exp 
on[Pn, x]/2] && TrinomialQ[Pn /. x -> x - S, x])] /; FreeQ[p, x] && PolyQ[P 
n, x] && GtQ[Expon[Pn, x], 2] && NeQ[Coeff[Pn, x, Expon[Pn, x] - 1], 0]
 
3.8.84.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2600\) vs. \(2(495)=990\).

Time = 0.93 (sec) , antiderivative size = 2601, normalized size of antiderivative = 5.95

method result size
default \(\text {Expression too large to display}\) \(2601\)
elliptic \(\text {Expression too large to display}\) \(2601\)

input
int(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x,method=_RETURNVERBOSE)
 
output
2*(1/4/(a^2+7*a+12)*x^3-3/4/(a^2+7*a+12)*x^2+1/4*(a+8)/(a^2+7*a+12)*x-1/4* 
(6+a)/(a^2+7*a+12))/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-((a+5)/(a^2+7*a+12)-1/2 
*(a+8)/(a^2+7*a+12))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(- 
1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/ 
(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/ 
2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1- 
(-1-(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x 
-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4 
)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+ 
(a+4)^(1/2))^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2) 
)/(-1+(a+4)^(1/2))^(1/2)/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/ 
2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2)))^(1/2 
)*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+ 
4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1 
+(a+4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/ 
2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/ 
2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)) 
)^(1/2))-1/(a^2+7*a+12)*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(( 
-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2 
))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2...
 
3.8.84.5 Fricas [F]

\[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)/(x^8 - 8*x^7 + 32*x^6 - 2*(a 
 - 64)*x^4 - 80*x^5 + 8*(a - 16)*x^3 - 16*(a - 4)*x^2 + a^2 + 16*a*x), x)
 
3.8.84.6 Sympy [F]

\[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(-x**4+4*x**3-8*x**2+a+8*x)**(3/2),x)
 
output
Integral((a - x**4 + 4*x**3 - 8*x**2 + 8*x)**(-3/2), x)
 
3.8.84.7 Maxima [F]

\[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="maxima")
 
output
integrate((-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(-3/2), x)
 
3.8.84.8 Giac [F]

\[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="giac")
 
output
integrate((-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(-3/2), x)
 
3.8.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (-x^4+4\,x^3-8\,x^2+8\,x+a\right )}^{3/2}} \,d x \]

input
int(1/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x)
 
output
int(1/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2), x)