3.9.93 \(\int \frac {\sqrt {1-\frac {1}{(-1+x^2)^2}}}{2-x^2} \, dx\) [893]

3.9.93.1 Optimal result
3.9.93.2 Mathematica [A] (verified)
3.9.93.3 Rubi [A] (verified)
3.9.93.4 Maple [A] (verified)
3.9.93.5 Fricas [A] (verification not implemented)
3.9.93.6 Sympy [F]
3.9.93.7 Maxima [F]
3.9.93.8 Giac [A] (verification not implemented)
3.9.93.9 Mupad [F(-1)]

3.9.93.1 Optimal result

Integrand size = 25, antiderivative size = 47 \[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=\frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \arctan \left (\sqrt {-2+x^2}\right )}{x \sqrt {-2+x^2}} \]

output
(-x^2+1)*arctan((x^2-2)^(1/2))*(1-1/(-x^2+1)^2)^(1/2)/x/(x^2-2)^(1/2)
 
3.9.93.2 Mathematica [A] (verified)

Time = 5.27 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=-\frac {\left (-1+x^2\right ) \sqrt {1-\frac {1}{\left (-1+x^2\right )^2}} \arctan \left (\sqrt {-2+x^2}\right )}{x \sqrt {-2+x^2}} \]

input
Integrate[Sqrt[1 - (-1 + x^2)^(-2)]/(2 - x^2),x]
 
output
-(((-1 + x^2)*Sqrt[1 - (-1 + x^2)^(-2)]*ArcTan[Sqrt[-2 + x^2]])/(x*Sqrt[-2 
 + x^2]))
 
3.9.93.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {7273, 25, 2467, 281, 353, 73, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-\frac {1}{\left (x^2-1\right )^2}}}{2-x^2} \, dx\)

\(\Big \downarrow \) 7273

\(\displaystyle -\frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \int -\frac {\sqrt {\left (x^2-1\right )^2-1}}{\left (1-x^2\right ) \left (2-x^2\right )}dx}{\sqrt {\left (x^2-1\right )^2-1}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \int \frac {\sqrt {\left (x^2-1\right )^2-1}}{\left (1-x^2\right ) \left (2-x^2\right )}dx}{\sqrt {\left (x^2-1\right )^2-1}}\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \int \frac {x \sqrt {x^2-2}}{\left (1-x^2\right ) \left (2-x^2\right )}dx}{x \sqrt {x^2-2}}\)

\(\Big \downarrow \) 281

\(\displaystyle -\frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \int \frac {x}{\left (1-x^2\right ) \sqrt {x^2-2}}dx}{x \sqrt {x^2-2}}\)

\(\Big \downarrow \) 353

\(\displaystyle -\frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \int \frac {1}{\left (1-x^2\right ) \sqrt {x^2-2}}dx^2}{2 x \sqrt {x^2-2}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \int \frac {1}{-x^4-1}d\sqrt {x^2-2}}{x \sqrt {x^2-2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (1-x^2\right ) \sqrt {1-\frac {1}{\left (1-x^2\right )^2}} \arctan \left (\sqrt {x^2-2}\right )}{x \sqrt {x^2-2}}\)

input
Int[Sqrt[1 - (-1 + x^2)^(-2)]/(2 - x^2),x]
 
output
((1 - x^2)*Sqrt[1 - (1 - x^2)^(-2)]*ArcTan[Sqrt[-2 + x^2]])/(x*Sqrt[-2 + x 
^2])
 

3.9.93.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7273
Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*v^n)^Fra 
cPart[p]/(v^(n*FracPart[p])*(b + a/v^n)^FracPart[p])   Int[u*v^(n*p)*(b + a 
/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] && Bi 
nomialQ[v, x] &&  !LinearQ[v, x]
 
3.9.93.4 Maple [A] (verified)

Time = 1.12 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.34

method result size
default \(\frac {\sqrt {\frac {\left (x^{2}-2\right ) x^{2}}{\left (x^{2}-1\right )^{2}}}\, \left (x^{2}-1\right ) \left (\arctan \left (\frac {x +2}{\sqrt {x^{2}-2}}\right )-\arctan \left (\frac {x -2}{\sqrt {x^{2}-2}}\right )\right )}{2 x \sqrt {x^{2}-2}}\) \(63\)
trager \(-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{3}+2 x^{2} \sqrt {-\frac {-x^{4}+2 x^{2}}{x^{4}-2 x^{2}+1}}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x -2 \sqrt {-\frac {-x^{4}+2 x^{2}}{x^{4}-2 x^{2}+1}}}{\left (x +1\right ) \left (x -1\right ) x}\right )}{2}\) \(106\)

input
int((1-1/(x^2-1)^2)^(1/2)/(-x^2+2),x,method=_RETURNVERBOSE)
 
output
1/2*((x^2-2)*x^2/(x^2-1)^2)^(1/2)*(x^2-1)*(arctan((x+2)/(x^2-2)^(1/2))-arc 
tan((x-2)/(x^2-2)^(1/2)))/x/(x^2-2)^(1/2)
 
3.9.93.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.77 \[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=-\arctan \left (\frac {{\left (x^{2} - 1\right )} \sqrt {\frac {x^{4} - 2 \, x^{2}}{x^{4} - 2 \, x^{2} + 1}}}{x}\right ) \]

input
integrate((1-1/(x^2-1)^2)^(1/2)/(-x^2+2),x, algorithm="fricas")
 
output
-arctan((x^2 - 1)*sqrt((x^4 - 2*x^2)/(x^4 - 2*x^2 + 1))/x)
 
3.9.93.6 Sympy [F]

\[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=- \int \frac {\sqrt {\frac {x^{4}}{x^{4} - 2 x^{2} + 1} - \frac {2 x^{2}}{x^{4} - 2 x^{2} + 1}}}{x^{2} - 2}\, dx \]

input
integrate((1-1/(x**2-1)**2)**(1/2)/(-x**2+2),x)
 
output
-Integral(sqrt(x**4/(x**4 - 2*x**2 + 1) - 2*x**2/(x**4 - 2*x**2 + 1))/(x** 
2 - 2), x)
 
3.9.93.7 Maxima [F]

\[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=\int { -\frac {\sqrt {-\frac {1}{{\left (x^{2} - 1\right )}^{2}} + 1}}{x^{2} - 2} \,d x } \]

input
integrate((1-1/(x^2-1)^2)^(1/2)/(-x^2+2),x, algorithm="maxima")
 
output
-integrate(sqrt(-1/(x^2 - 1)^2 + 1)/(x^2 - 2), x)
 
3.9.93.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.38 \[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=-\arctan \left (\sqrt {x^{2} - 2}\right ) \mathrm {sgn}\left (x^{3} - x\right ) \]

input
integrate((1-1/(x^2-1)^2)^(1/2)/(-x^2+2),x, algorithm="giac")
 
output
-arctan(sqrt(x^2 - 2))*sgn(x^3 - x)
 
3.9.93.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-\frac {1}{\left (-1+x^2\right )^2}}}{2-x^2} \, dx=\int -\frac {\sqrt {1-\frac {1}{{\left (x^2-1\right )}^2}}}{x^2-2} \,d x \]

input
int(-(1 - 1/(x^2 - 1)^2)^(1/2)/(x^2 - 2),x)
 
output
int(-(1 - 1/(x^2 - 1)^2)^(1/2)/(x^2 - 2), x)