3.10.85 \(\int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} (-1-2 x+x^2+3 x^3)} \, dx\) [985]

3.10.85.1 Optimal result
3.10.85.2 Mathematica [A] (verified)
3.10.85.3 Rubi [F]
3.10.85.4 Maple [F(-1)]
3.10.85.5 Fricas [C] (verification not implemented)
3.10.85.6 Sympy [N/A]
3.10.85.7 Maxima [N/A]
3.10.85.8 Giac [N/A]
3.10.85.9 Mupad [N/A]

3.10.85.1 Optimal result

Integrand size = 33, antiderivative size = 75 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=\frac {\left ((-1+x)^3\right )^{3/4} \text {RootSum}\left [1+9 \text {$\#$1}^4+10 \text {$\#$1}^8+3 \text {$\#$1}^{12}\&,\frac {\log \left (\sqrt [4]{-1+x}-\text {$\#$1}\right )}{9 \text {$\#$1}^3+20 \text {$\#$1}^7+9 \text {$\#$1}^{11}}\&\right ]}{(-1+x)^{9/4}} \]

output
Unintegrable
 
3.10.85.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=\frac {(-1+x)^{3/4} \text {RootSum}\left [1+9 \text {$\#$1}^4+10 \text {$\#$1}^8+3 \text {$\#$1}^{12}\&,\frac {\log \left (\sqrt [4]{-1+x}-\text {$\#$1}\right )}{9 \text {$\#$1}^3+20 \text {$\#$1}^7+9 \text {$\#$1}^{11}}\&\right ]}{\sqrt [4]{(-1+x)^3}} \]

input
Integrate[1/((-1 + 3*x - 3*x^2 + x^3)^(1/4)*(-1 - 2*x + x^2 + 3*x^3)),x]
 
output
((-1 + x)^(3/4)*RootSum[1 + 9*#1^4 + 10*#1^8 + 3*#1^12 & , Log[(-1 + x)^(1 
/4) - #1]/(9*#1^3 + 20*#1^7 + 9*#1^11) & ])/((-1 + x)^3)^(1/4)
 
3.10.85.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt [4]{x^3-3 x^2+3 x-1} \left (3 x^3+x^2-2 x-1\right )} \, dx\)

\(\Big \downarrow \) 2008

\(\displaystyle \frac {(x-1)^{3/4} \int -\frac {1}{(x-1)^{3/4} \left (-3 x^3-x^2+2 x+1\right )}dx}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {(x-1)^{3/4} \int \frac {1}{(x-1)^{3/4} \left (-3 x^3-x^2+2 x+1\right )}dx}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 2490

\(\displaystyle -\frac {(x-1)^{3/4} \int \frac {1}{(x-1)^{3/4} \left (-3 \left (x+\frac {1}{9}\right )^3+\frac {19}{9} \left (x+\frac {1}{9}\right )+\frac {187}{243}\right )}d\left (x+\frac {1}{9}\right )}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 2485

\(\displaystyle -\frac {9 (x-1)^{3/4} \int -\frac {324 \sqrt {3}}{\left (\sqrt [3]{2} \left (\frac {38}{\sqrt [3]{187+9 \sqrt {93}}}+\sqrt [3]{374+18 \sqrt {93}}\right )-18 \left (x+\frac {1}{9}\right )\right ) \left (9 \left (x+\frac {1}{9}\right )-10\right )^{3/4} \left (-162 \left (x+\frac {1}{9}\right )^2-9 \sqrt [3]{2} \left (\frac {38}{\sqrt [3]{187+9 \sqrt {93}}}+\sqrt [3]{374+18 \sqrt {93}}\right ) \left (x+\frac {1}{9}\right )-\sqrt [3]{2} \left (187+9 \sqrt {93}\right )^{2/3}-722 \left (\frac {2}{187+9 \sqrt {93}}\right )^{2/3}+38\right )}d\left (x+\frac {1}{9}\right )}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2916 \sqrt {3} (x-1)^{3/4} \int \frac {1}{\left (\sqrt [3]{2} \left (\frac {38}{\sqrt [3]{187+9 \sqrt {93}}}+\sqrt [3]{374+18 \sqrt {93}}\right )-18 \left (x+\frac {1}{9}\right )\right ) \left (9 \left (x+\frac {1}{9}\right )-10\right )^{3/4} \left (-162 \left (x+\frac {1}{9}\right )^2-9 \sqrt [3]{2} \left (\frac {38}{\sqrt [3]{187+9 \sqrt {93}}}+\sqrt [3]{374+18 \sqrt {93}}\right ) \left (x+\frac {1}{9}\right )-\sqrt [3]{2} \left (187+9 \sqrt {93}\right )^{2/3}-722 \left (\frac {2}{187+9 \sqrt {93}}\right )^{2/3}+38\right )}d\left (x+\frac {1}{9}\right )}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 1199

\(\displaystyle \frac {1296 \sqrt {3} (x-1)^{3/4} \int \left (\frac {1}{3 \left (38+722 \left (\frac {2}{187+9 \sqrt {93}}\right )^{2/3}+\sqrt [3]{2} \left (187+9 \sqrt {93}\right )^{2/3}\right ) \left (2 \left (9 \left (x+\frac {1}{9}\right )-10\right )-2^{2/3} \sqrt [3]{187+9 \sqrt {93}}-38 \sqrt [3]{\frac {2}{187+9 \sqrt {93}}}+20\right )}-\frac {9 \left (x+\frac {1}{9}\right )+2^{2/3} \sqrt [3]{187+9 \sqrt {93}}+38 \sqrt [3]{\frac {2}{187+9 \sqrt {93}}}}{3 \left (38+722 \left (\frac {2}{187+9 \sqrt {93}}\right )^{2/3}+\sqrt [3]{2} \left (187+9 \sqrt {93}\right )^{2/3}\right ) \left (2 \left (9 \left (x+\frac {1}{9}\right )-10\right )^2+\left (40+38 \sqrt [3]{\frac {2}{187+9 \sqrt {93}}}+2^{2/3} \sqrt [3]{187+9 \sqrt {93}}\right ) \left (9 \left (x+\frac {1}{9}\right )-10\right )+\sqrt [3]{2} \left (187+9 \sqrt {93}\right )^{2/3}+10\ 2^{2/3} \sqrt [3]{187+9 \sqrt {93}}+722 \left (\frac {2}{187+9 \sqrt {93}}\right )^{2/3}+380 \sqrt [3]{\frac {2}{187+9 \sqrt {93}}}+162\right )}\right )d\sqrt [4]{9 \left (x+\frac {1}{9}\right )-10}}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {1296 \sqrt {3} (x-1)^{3/4} \int \frac {1}{4 \left (\left (9 \left (x+\frac {1}{9}\right )-10\right )^3+30 \left (9 \left (x+\frac {1}{9}\right )-10\right )^2+243 \left (9 \left (x+\frac {1}{9}\right )-10\right )+243\right )}d\sqrt [4]{9 \left (x+\frac {1}{9}\right )-10}}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {324 \sqrt {3} (x-1)^{3/4} \int \frac {1}{\left (9 \left (x+\frac {1}{9}\right )-10\right )^3+30 \left (9 \left (x+\frac {1}{9}\right )-10\right )^2+243 \left (9 \left (x+\frac {1}{9}\right )-10\right )+243}d\sqrt [4]{9 \left (x+\frac {1}{9}\right )-10}}{\sqrt [4]{(x-1)^3}}\)

\(\Big \downarrow \) 7299

\(\displaystyle \frac {324 \sqrt {3} (x-1)^{3/4} \int \frac {1}{\left (9 \left (x+\frac {1}{9}\right )-10\right )^3+30 \left (9 \left (x+\frac {1}{9}\right )-10\right )^2+243 \left (9 \left (x+\frac {1}{9}\right )-10\right )+243}d\sqrt [4]{9 \left (x+\frac {1}{9}\right )-10}}{\sqrt [4]{(x-1)^3}}\)

input
Int[1/((-1 + 3*x - 3*x^2 + x^3)^(1/4)*(-1 - 2*x + x^2 + 3*x^3)),x]
 
output
$Aborted
 

3.10.85.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1199
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Denominator[m]}, Simp[q/e   Subs 
t[Int[ExpandIntegrand[x^(q*(m + 1) - 1)*(((e*f - d*g)/e + g*(x^q/e))^n/((c* 
d^2 - b*d*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))), x], 
 x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && Integer 
Q[n] && FractionQ[m]
 

rule 2008
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, 
x]], b = Rt[Coeff[Px, x, Expon[Px, x]], Expon[Px, x]]}, Simp[((a + b*x)^Exp 
on[Px, x])^p/(a + b*x)^(Expon[Px, x]*p)   Int[u*(a + b*x)^(Expon[Px, x]*p), 
 x], x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /;  !IntegerQ[p] && PolyQ[Px, x 
] && GtQ[Expon[Px, x], 1] && NeQ[Coeff[Px, x, 0], 0]
 

rule 2485
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_S 
ymbol] :> With[{r = Rt[-9*a*d^2 + Sqrt[3]*d*Sqrt[4*b^3*d + 27*a^2*d^2], 3]} 
, Simp[1/d^(2*p)   Int[(e + f*x)^m*Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/3) + 
 d*x, x]^p*Simp[b*(d/3) + 12^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d 
*(2^(1/3)*b*(d/(3^(1/3)*r)) - r/18^(1/3))*x + d^2*x^2, x]^p, x], x]] /; Fre 
eQ[{a, b, d, e, f, m}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && ILtQ[p, 0]
 

rule 2490
Int[(P3_)^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> With[{a = Coeff[P3 
, x, 0], b = Coeff[P3, x, 1], c = Coeff[P3, x, 2], d = Coeff[P3, x, 3]}, Su 
bst[Int[((3*d*e - c*f)/(3*d) + f*x)^m*Simp[(2*c^3 - 9*b*c*d + 27*a*d^2)/(27 
*d^2) - (c^2 - 3*b*d)*(x/(3*d)) + d*x^3, x]^p, x], x, x + c/(3*d)] /; NeQ[c 
, 0]] /; FreeQ[{e, f, m, p}, x] && PolyQ[P3, x, 3]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
3.10.85.4 Maple [F(-1)]

Timed out.

\[\int \frac {1}{\left (x^{3}-3 x^{2}+3 x -1\right )^{\frac {1}{4}} \left (3 x^{3}+x^{2}-2 x -1\right )}d x\]

input
int(1/(x^3-3*x^2+3*x-1)^(1/4)/(3*x^3+x^2-2*x-1),x)
 
output
int(1/(x^3-3*x^2+3*x-1)^(1/4)/(3*x^3+x^2-2*x-1),x)
 
3.10.85.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.94 (sec) , antiderivative size = 6285, normalized size of antiderivative = 83.80 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(x^3-3*x^2+3*x-1)^(1/4)/(3*x^3+x^2-2*x-1),x, algorithm="fricas 
")
 
output
Too large to include
 
3.10.85.6 Sympy [N/A]

Not integrable

Time = 8.14 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.32 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=\int \frac {1}{\left (3 x^{3} + x^{2} - 2 x - 1\right ) \sqrt [4]{\left (x - 1\right )^{3}}}\, dx \]

input
integrate(1/(x**3-3*x**2+3*x-1)**(1/4)/(3*x**3+x**2-2*x-1),x)
 
output
Integral(1/((3*x**3 + x**2 - 2*x - 1)*((x - 1)**3)**(1/4)), x)
 
3.10.85.7 Maxima [N/A]

Not integrable

Time = 0.23 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.44 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=\int { \frac {1}{{\left (3 \, x^{3} + x^{2} - 2 \, x - 1\right )} {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(1/(x^3-3*x^2+3*x-1)^(1/4)/(3*x^3+x^2-2*x-1),x, algorithm="maxima 
")
 
output
integrate(1/((3*x^3 + x^2 - 2*x - 1)*(x^3 - 3*x^2 + 3*x - 1)^(1/4)), x)
 
3.10.85.8 Giac [N/A]

Not integrable

Time = 0.28 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.44 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=\int { \frac {1}{{\left (3 \, x^{3} + x^{2} - 2 \, x - 1\right )} {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(1/(x^3-3*x^2+3*x-1)^(1/4)/(3*x^3+x^2-2*x-1),x, algorithm="giac")
 
output
integrate(1/((3*x^3 + x^2 - 2*x - 1)*(x^3 - 3*x^2 + 3*x - 1)^(1/4)), x)
 
3.10.85.9 Mupad [N/A]

Not integrable

Time = 5.67 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.49 \[ \int \frac {1}{\sqrt [4]{-1+3 x-3 x^2+x^3} \left (-1-2 x+x^2+3 x^3\right )} \, dx=-\int \frac {1}{{\left (x^3-3\,x^2+3\,x-1\right )}^{1/4}\,\left (-3\,x^3-x^2+2\,x+1\right )} \,d x \]

input
int(-1/((3*x - 3*x^2 + x^3 - 1)^(1/4)*(2*x - x^2 - 3*x^3 + 1)),x)
 
output
-int(1/((3*x - 3*x^2 + x^3 - 1)^(1/4)*(2*x - x^2 - 3*x^3 + 1)), x)