3.11.25 \(\int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx\) [1025]

3.11.25.1 Optimal result
3.11.25.2 Mathematica [A] (verified)
3.11.25.3 Rubi [F]
3.11.25.4 Maple [A] (verified)
3.11.25.5 Fricas [A] (verification not implemented)
3.11.25.6 Sympy [F]
3.11.25.7 Maxima [F]
3.11.25.8 Giac [F(-2)]
3.11.25.9 Mupad [F(-1)]

3.11.25.1 Optimal result

Integrand size = 41, antiderivative size = 77 \[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\frac {4 \sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{a}-\frac {4 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {c}}\right )}{a} \]

output
4*(c+(a*x+(a^2*x^2+b)^(1/2))^(1/2))^(1/2)/a-4*c^(1/2)*arctanh((c+(a*x+(a^2 
*x^2+b)^(1/2))^(1/2))^(1/2)/c^(1/2))/a
 
3.11.25.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.96 \[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\frac {4 \left (\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}-\sqrt {c} \text {arctanh}\left (\frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {c}}\right )\right )}{a} \]

input
Integrate[Sqrt[c + Sqrt[a*x + Sqrt[b + a^2*x^2]]]/Sqrt[b + a^2*x^2],x]
 
output
(4*(Sqrt[c + Sqrt[a*x + Sqrt[b + a^2*x^2]]] - Sqrt[c]*ArcTanh[Sqrt[c + Sqr 
t[a*x + Sqrt[b + a^2*x^2]]]/Sqrt[c]]))/a
 
3.11.25.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {\sqrt {a^2 x^2+b}+a x}+c}}{\sqrt {a^2 x^2+b}} \, dx\)

\(\Big \downarrow \) 7299

\(\displaystyle \int \frac {\sqrt {\sqrt {\sqrt {a^2 x^2+b}+a x}+c}}{\sqrt {a^2 x^2+b}}dx\)

input
Int[Sqrt[c + Sqrt[a*x + Sqrt[b + a^2*x^2]]]/Sqrt[b + a^2*x^2],x]
 
output
$Aborted
 

3.11.25.3.1 Defintions of rubi rules used

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
3.11.25.4 Maple [A] (verified)

Time = 1.19 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.79

method result size
derivativedivides \(\frac {4 \sqrt {c +\sqrt {a x +\sqrt {a^{2} x^{2}+b}}}-4 \sqrt {c}\, \operatorname {arctanh}\left (\frac {\sqrt {c +\sqrt {a x +\sqrt {a^{2} x^{2}+b}}}}{\sqrt {c}}\right )}{a}\) \(61\)
default \(\frac {4 \sqrt {c +\sqrt {a x +\sqrt {a^{2} x^{2}+b}}}-4 \sqrt {c}\, \operatorname {arctanh}\left (\frac {\sqrt {c +\sqrt {a x +\sqrt {a^{2} x^{2}+b}}}}{\sqrt {c}}\right )}{a}\) \(61\)

input
int((c+(a*x+(a^2*x^2+b)^(1/2))^(1/2))^(1/2)/(a^2*x^2+b)^(1/2),x,method=_RE 
TURNVERBOSE)
 
output
2/a*(2*(c+(a*x+(a^2*x^2+b)^(1/2))^(1/2))^(1/2)-2*c^(1/2)*arctanh((c+(a*x+( 
a^2*x^2+b)^(1/2))^(1/2))^(1/2)/c^(1/2)))
 
3.11.25.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 202, normalized size of antiderivative = 2.62 \[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\left [\frac {2 \, {\left (\sqrt {c} \log \left (2 \, {\left (a \sqrt {c} x - \sqrt {a^{2} x^{2} + b} \sqrt {c}\right )} \sqrt {a x + \sqrt {a^{2} x^{2} + b}} \sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} + b}}} - 2 \, {\left (a c x - \sqrt {a^{2} x^{2} + b} c\right )} \sqrt {a x + \sqrt {a^{2} x^{2} + b}} + b\right ) + 2 \, \sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} + b}}}\right )}}{a}, \frac {4 \, {\left (\sqrt {-c} \arctan \left (\frac {\sqrt {-c} \sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} + b}}}}{c}\right ) + \sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} + b}}}\right )}}{a}\right ] \]

input
integrate((c+(a*x+(a^2*x^2+b)^(1/2))^(1/2))^(1/2)/(a^2*x^2+b)^(1/2),x, alg 
orithm="fricas")
 
output
[2*(sqrt(c)*log(2*(a*sqrt(c)*x - sqrt(a^2*x^2 + b)*sqrt(c))*sqrt(a*x + sqr 
t(a^2*x^2 + b))*sqrt(c + sqrt(a*x + sqrt(a^2*x^2 + b))) - 2*(a*c*x - sqrt( 
a^2*x^2 + b)*c)*sqrt(a*x + sqrt(a^2*x^2 + b)) + b) + 2*sqrt(c + sqrt(a*x + 
 sqrt(a^2*x^2 + b))))/a, 4*(sqrt(-c)*arctan(sqrt(-c)*sqrt(c + sqrt(a*x + s 
qrt(a^2*x^2 + b)))/c) + sqrt(c + sqrt(a*x + sqrt(a^2*x^2 + b))))/a]
 
3.11.25.6 Sympy [F]

\[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\int \frac {\sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} + b}}}}{\sqrt {a^{2} x^{2} + b}}\, dx \]

input
integrate((c+(a*x+(a**2*x**2+b)**(1/2))**(1/2))**(1/2)/(a**2*x**2+b)**(1/2 
),x)
 
output
Integral(sqrt(c + sqrt(a*x + sqrt(a**2*x**2 + b)))/sqrt(a**2*x**2 + b), x)
 
3.11.25.7 Maxima [F]

\[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\int { \frac {\sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} + b}}}}{\sqrt {a^{2} x^{2} + b}} \,d x } \]

input
integrate((c+(a*x+(a^2*x^2+b)^(1/2))^(1/2))^(1/2)/(a^2*x^2+b)^(1/2),x, alg 
orithm="maxima")
 
output
integrate(sqrt(c + sqrt(a*x + sqrt(a^2*x^2 + b)))/sqrt(a^2*x^2 + b), x)
 
3.11.25.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c+(a*x+(a^2*x^2+b)^(1/2))^(1/2))^(1/2)/(a^2*x^2+b)^(1/2),x, alg 
orithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.11.25.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+\sqrt {a x+\sqrt {b+a^2 x^2}}}}{\sqrt {b+a^2 x^2}} \, dx=\int \frac {\sqrt {c+\sqrt {\sqrt {a^2\,x^2+b}+a\,x}}}{\sqrt {a^2\,x^2+b}} \,d x \]

input
int((c + ((b + a^2*x^2)^(1/2) + a*x)^(1/2))^(1/2)/(b + a^2*x^2)^(1/2),x)
 
output
int((c + ((b + a^2*x^2)^(1/2) + a*x)^(1/2))^(1/2)/(b + a^2*x^2)^(1/2), x)