3.11.37 \(\int \frac {\sqrt [4]{-1+x^4} (-1+x^8)}{x^6 (1+x^8)} \, dx\) [1037]

3.11.37.1 Optimal result
3.11.37.2 Mathematica [A] (verified)
3.11.37.3 Rubi [C] (verified)
3.11.37.4 Maple [C] (warning: unable to verify)
3.11.37.5 Fricas [C] (verification not implemented)
3.11.37.6 Sympy [N/A]
3.11.37.7 Maxima [N/A]
3.11.37.8 Giac [C] (verification not implemented)
3.11.37.9 Mupad [N/A]

3.11.37.1 Optimal result

Integrand size = 25, antiderivative size = 78 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {\left (1-x^4\right ) \sqrt [4]{-1+x^4}}{5 x^5}+\frac {1}{4} \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x) \text {$\#$1}+\log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}}{-1+\text {$\#$1}^4}\&\right ] \]

output
Unintegrable
 
3.11.37.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {-4 \left (-1+x^4\right )^{5/4}+5 x^5 \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x) \text {$\#$1}+\log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}}{-1+\text {$\#$1}^4}\&\right ]}{20 x^5} \]

input
Integrate[((-1 + x^4)^(1/4)*(-1 + x^8))/(x^6*(1 + x^8)),x]
 
output
(-4*(-1 + x^4)^(5/4) + 5*x^5*RootSum[2 - 2*#1^4 + #1^8 & , (-(Log[x]*#1) + 
 Log[(-1 + x^4)^(1/4) - x*#1]*#1)/(-1 + #1^4) & ])/(20*x^5)
 
3.11.37.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.85 (sec) , antiderivative size = 522, normalized size of antiderivative = 6.69, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {1388, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x^4-1} \left (x^8-1\right )}{x^6 \left (x^8+1\right )} \, dx\)

\(\Big \downarrow \) 1388

\(\displaystyle \int \frac {\left (x^4-1\right )^{5/4} \left (x^4+1\right )}{x^6 \left (x^8+1\right )}dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {\left (x^4-1\right )^{5/4}}{x^6}+\frac {\left (x^4-1\right )^{5/4}}{x^2}+\frac {\left (-x^4-1\right ) \left (x^4-1\right )^{5/4} x^2}{x^8+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},x^4,-i x^4\right )}{6 \sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},x^4,i x^4\right )}{6 \sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^4,-i x^4\right )}{6 \sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^4,i x^4\right )}{6 \sqrt [4]{1-x^4}}-\frac {1}{2} \arctan \left (\frac {x}{\sqrt [4]{x^4-1}}\right )+\frac {1}{8} (1-i)^{5/4} \arctan \left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )+\frac {\arctan \left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1-i)^{3/4}}+\frac {1}{8} (1+i)^{5/4} \arctan \left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )+\frac {\arctan \left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1+i)^{3/4}}+\frac {1}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{x^4-1}}\right )-\frac {1}{8} (1-i)^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )-\frac {\text {arctanh}\left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1-i)^{3/4}}-\frac {1}{8} (1+i)^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )-\frac {\text {arctanh}\left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1+i)^{3/4}}-\frac {\left (x^4-1\right )^{5/4}}{x}-\frac {\sqrt [4]{x^4-1}}{x}-\frac {\left (x^4-1\right )^{5/4}}{5 x^5}+\sqrt [4]{x^4-1} x^3\)

input
Int[((-1 + x^4)^(1/4)*(-1 + x^8))/(x^6*(1 + x^8)),x]
 
output
-((-1 + x^4)^(1/4)/x) + x^3*(-1 + x^4)^(1/4) - (-1 + x^4)^(5/4)/(5*x^5) - 
(-1 + x^4)^(5/4)/x + (x^3*(-1 + x^4)^(1/4)*AppellF1[3/4, -5/4, 1, 7/4, x^4 
, (-I)*x^4])/(6*(1 - x^4)^(1/4)) + (x^3*(-1 + x^4)^(1/4)*AppellF1[3/4, -5/ 
4, 1, 7/4, x^4, I*x^4])/(6*(1 - x^4)^(1/4)) + (x^3*(-1 + x^4)^(1/4)*Appell 
F1[3/4, -1/4, 1, 7/4, x^4, (-I)*x^4])/(6*(1 - x^4)^(1/4)) + (x^3*(-1 + x^4 
)^(1/4)*AppellF1[3/4, -1/4, 1, 7/4, x^4, I*x^4])/(6*(1 - x^4)^(1/4)) - Arc 
Tan[x/(-1 + x^4)^(1/4)]/2 + ArcTan[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4* 
(1 - I)^(3/4)) + ((1 - I)^(5/4)*ArcTan[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)] 
)/8 + ArcTan[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4*(1 + I)^(3/4)) + ((1 + 
 I)^(5/4)*ArcTan[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)])/8 + ArcTanh[x/(-1 + 
x^4)^(1/4)]/2 - ArcTanh[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4*(1 - I)^(3/ 
4)) - ((1 - I)^(5/4)*ArcTanh[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)])/8 - ArcT 
anh[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4*(1 + I)^(3/4)) - ((1 + I)^(5/4) 
*ArcTanh[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)])/8
 

3.11.37.3.1 Defintions of rubi rules used

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.11.37.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 1.

Time = 16.58 (sec) , antiderivative size = 3768, normalized size of antiderivative = 48.31

\[\text {output too large to display}\]

input
int((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x)
 
output
-1/5*(x^8-2*x^4+1)/x^5/(x^4-1)^(3/4)+(1/16*RootOf(_Z^4+1048576*RootOf(8388 
608*_Z^8-4096*_Z^4+1)^4-512)*ln(-(8192*x^12*RootOf(_Z^4+1048576*RootOf(838 
8608*_Z^8-4096*_Z^4+1)^4-512)^2*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-4096*(x 
^12-3*x^8+3*x^4-1)^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*RootOf(_Z^4+10 
48576*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-512)^3*x^9-16384*x^8*RootOf(83886 
08*_Z^8-4096*_Z^4+1)^4*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1 
)^4-512)^2-6*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-512)^2 
*x^12+8192*(x^12-3*x^8+3*x^4-1)^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*R 
ootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-512)^3*x^5+(x^12-3*x 
^8+3*x^4-1)^(1/4)*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-5 
12)^3*x^9-262144*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*(x^12-3*x^8+3*x^4-1)^( 
1/2)*x^6+65536*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*RootOf(_Z^4+1048576*Root 
Of(8388608*_Z^8-4096*_Z^4+1)^4-512)*(x^12-3*x^8+3*x^4-1)^(3/4)*x^3+8192*x^ 
4*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*RootOf(_Z^4+1048576*RootOf(8388608*_Z 
^8-4096*_Z^4+1)^4-512)^2+14*x^8*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-40 
96*_Z^4+1)^4-512)^2-4096*(x^12-3*x^8+3*x^4-1)^(1/4)*RootOf(8388608*_Z^8-40 
96*_Z^4+1)^4*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-512)^3 
*x-2*(x^12-3*x^8+3*x^4-1)^(1/4)*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-40 
96*_Z^4+1)^4-512)^3*x^5+262144*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*(x^12-3* 
x^8+3*x^4-1)^(1/2)*x^2+128*(x^12-3*x^8+3*x^4-1)^(1/2)*x^6-10*x^4*RootOf...
 
3.11.37.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 3.71 (sec) , antiderivative size = 863, normalized size of antiderivative = 11.06 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\text {Too large to display} \]

input
integrate((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x, algorithm="fricas")
 
output
-1/40*(5*x^5*sqrt(-sqrt(I + 1))*log(-(4*sqrt(I + 1)*((3*I + 4)*x^7 + (4*I 
- 3)*x^3)*(x^4 - 1)^(1/4) + 4*((3*I + 4)*x^5 + (4*I - 3)*x)*(x^4 - 1)^(3/4 
) - (sqrt(I + 1)*(-(15*I - 5)*x^8 + (12*I + 16)*x^4 + I - 7) - 4*((4*I - 3 
)*x^6 - (3*I + 4)*x^2)*sqrt(x^4 - 1))*sqrt(-sqrt(I + 1)))/(x^8 + 1)) - 5*x 
^5*sqrt(-sqrt(I + 1))*log(-(4*sqrt(I + 1)*((3*I + 4)*x^7 + (4*I - 3)*x^3)* 
(x^4 - 1)^(1/4) + 4*((3*I + 4)*x^5 + (4*I - 3)*x)*(x^4 - 1)^(3/4) - (sqrt( 
I + 1)*((15*I - 5)*x^8 - (12*I + 16)*x^4 - I + 7) - 4*(-(4*I - 3)*x^6 + (3 
*I + 4)*x^2)*sqrt(x^4 - 1))*sqrt(-sqrt(I + 1)))/(x^8 + 1)) + 5*x^5*sqrt(-s 
qrt(-I + 1))*log(-(4*sqrt(-I + 1)*(-(3*I - 4)*x^7 - (4*I + 3)*x^3)*(x^4 - 
1)^(1/4) + 4*(-(3*I - 4)*x^5 - (4*I + 3)*x)*(x^4 - 1)^(3/4) - (sqrt(-I + 1 
)*((15*I + 5)*x^8 - (12*I - 16)*x^4 - I - 7) - 4*(-(4*I + 3)*x^6 + (3*I - 
4)*x^2)*sqrt(x^4 - 1))*sqrt(-sqrt(-I + 1)))/(x^8 + 1)) - 5*x^5*sqrt(-sqrt( 
-I + 1))*log(-(4*sqrt(-I + 1)*(-(3*I - 4)*x^7 - (4*I + 3)*x^3)*(x^4 - 1)^( 
1/4) + 4*(-(3*I - 4)*x^5 - (4*I + 3)*x)*(x^4 - 1)^(3/4) - (sqrt(-I + 1)*(- 
(15*I + 5)*x^8 + (12*I - 16)*x^4 + I + 7) - 4*((4*I + 3)*x^6 - (3*I - 4)*x 
^2)*sqrt(x^4 - 1))*sqrt(-sqrt(-I + 1)))/(x^8 + 1)) - 5*(-I + 1)^(1/4)*x^5* 
log(-(4*sqrt(-I + 1)*((3*I - 4)*x^7 + (4*I + 3)*x^3)*(x^4 - 1)^(1/4) + 4*( 
-(3*I - 4)*x^5 - (4*I + 3)*x)*(x^4 - 1)^(3/4) - (-I + 1)^(1/4)*(sqrt(-I + 
1)*((15*I + 5)*x^8 - (12*I - 16)*x^4 - I - 7) - 4*((4*I + 3)*x^6 - (3*I - 
4)*x^2)*sqrt(x^4 - 1)))/(x^8 + 1)) + 5*(-I + 1)^(1/4)*x^5*log(-(4*sqrt(...
 
3.11.37.6 Sympy [N/A]

Not integrable

Time = 42.27 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.53 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\int \frac {\sqrt [4]{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \left (x^{4} + 1\right )}{x^{6} \left (x^{8} + 1\right )}\, dx \]

input
integrate((x**4-1)**(1/4)*(x**8-1)/x**6/(x**8+1),x)
 
output
Integral(((x - 1)*(x + 1)*(x**2 + 1))**(1/4)*(x - 1)*(x + 1)*(x**2 + 1)*(x 
**4 + 1)/(x**6*(x**8 + 1)), x)
 
3.11.37.7 Maxima [N/A]

Not integrable

Time = 0.31 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.32 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\int { \frac {{\left (x^{8} - 1\right )} {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{{\left (x^{8} + 1\right )} x^{6}} \,d x } \]

input
integrate((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x, algorithm="maxima")
 
output
integrate((x^8 - 1)*(x^4 - 1)^(1/4)/((x^8 + 1)*x^6), x)
 
3.11.37.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.31 (sec) , antiderivative size = 290, normalized size of antiderivative = 3.72 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {1}{144115188075855872} i \, \left (8 i + 8\right )^{\frac {63}{4}} \log \left (\left (-281474976710656 i + 281474976710656\right )^{\frac {1}{4}} - \frac {4096 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{144115188075855872} i \, \left (8 i + 8\right )^{\frac {63}{4}} \log \left (-\left (-281474976710656 i + 281474976710656\right )^{\frac {1}{4}} - \frac {4096 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{536870912} \, \left (8 i + 8\right )^{\frac {31}{4}} \log \left (i \, \left (-16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{536870912} \, \left (8 i + 8\right )^{\frac {31}{4}} \log \left (-i \, \left (-16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {{\left (x^{4} - 1\right )}^{\frac {1}{4}} {\left (\frac {1}{x^{4}} - 1\right )}}{5 \, x} - \frac {i \, \left (8 i + 8\right )^{\frac {15}{4}} \log \left (\left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} + \frac {\left (8 i + 8\right )^{\frac {15}{4}} \log \left (i \, \left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} - \frac {\left (8 i + 8\right )^{\frac {15}{4}} \log \left (-i \, \left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} + \frac {i \, \left (8 i + 8\right )^{\frac {15}{4}} \log \left (-\left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} \]

input
integrate((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x, algorithm="giac")
 
output
1/144115188075855872*I*(8*I + 8)^(63/4)*log((-281474976710656*I + 28147497 
6710656)^(1/4) - 4096*(x^4 - 1)^(1/4)/x) - 1/144115188075855872*I*(8*I + 8 
)^(63/4)*log(-(-281474976710656*I + 281474976710656)^(1/4) - 4096*(x^4 - 1 
)^(1/4)/x) - 1/536870912*(8*I + 8)^(31/4)*log(I*(-16777216*I + 16777216)^( 
1/4) - 64*(x^4 - 1)^(1/4)/x) + 1/536870912*(8*I + 8)^(31/4)*log(-I*(-16777 
216*I + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/x) + 1/5*(x^4 - 1)^(1/4)*(1/x 
^4 - 1)/x - 1/256*I*(8*I + 8)^(15/4)*log((16777216*I + 16777216)^(1/4) - 6 
4*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sqrt(2) + 2))^7 + 1/256* 
(8*I + 8)^(15/4)*log(I*(16777216*I + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/ 
x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sqrt(2) + 2))^7 - 1/256*(8*I + 8)^(15/4)*l 
og(-I*(16777216*I + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) 
+ 2) + I*sqrt(-sqrt(2) + 2))^7 + 1/256*I*(8*I + 8)^(15/4)*log(-(16777216*I 
 + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sq 
rt(2) + 2))^7
 
3.11.37.9 Mupad [N/A]

Not integrable

Time = 6.17 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.32 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\int \frac {{\left (x^4-1\right )}^{1/4}\,\left (x^8-1\right )}{x^6\,\left (x^8+1\right )} \,d x \]

input
int(((x^4 - 1)^(1/4)*(x^8 - 1))/(x^6*(x^8 + 1)),x)
 
output
int(((x^4 - 1)^(1/4)*(x^8 - 1))/(x^6*(x^8 + 1)), x)