3.11.47 \(\int \frac {1+x^4}{\sqrt {-x+x^3} (-1+x^4)} \, dx\) [1047]

3.11.47.1 Optimal result
3.11.47.2 Mathematica [C] (verified)
3.11.47.3 Rubi [C] (verified)
3.11.47.4 Maple [A] (verified)
3.11.47.5 Fricas [A] (verification not implemented)
3.11.47.6 Sympy [F]
3.11.47.7 Maxima [F]
3.11.47.8 Giac [F]
3.11.47.9 Mupad [B] (verification not implemented)

3.11.47.1 Optimal result

Integrand size = 24, antiderivative size = 79 \[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\frac {\sqrt {-x+x^3}}{1-x^2}-\frac {1}{4} \arctan \left (\frac {2 \sqrt {-x+x^3}}{-1-2 x+x^2}\right )-\frac {1}{4} \text {arctanh}\left (\frac {-\frac {1}{2}+x+\frac {x^2}{2}}{\sqrt {-x+x^3}}\right ) \]

output
(x^3-x)^(1/2)/(-x^2+1)-1/4*arctan(2*(x^3-x)^(1/2)/(x^2-2*x-1))-1/4*arctanh 
((-1/2+x+1/2*x^2)/(x^3-x)^(1/2))
 
3.11.47.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.32 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.23 \[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\frac {-4 x-(1-i) \sqrt {x} \sqrt {-1+x^2} \arctan \left (\frac {(1+i) \sqrt {x}}{\sqrt {-1+x^2}}\right )+(1+i) \sqrt {x} \sqrt {-1+x^2} \arctan \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {-1+x^2}}{\sqrt {x}}\right )}{4 \sqrt {x \left (-1+x^2\right )}} \]

input
Integrate[(1 + x^4)/(Sqrt[-x + x^3]*(-1 + x^4)),x]
 
output
(-4*x - (1 - I)*Sqrt[x]*Sqrt[-1 + x^2]*ArcTan[((1 + I)*Sqrt[x])/Sqrt[-1 + 
x^2]] + (1 + I)*Sqrt[x]*Sqrt[-1 + x^2]*ArcTan[((1/2 + I/2)*Sqrt[-1 + x^2]) 
/Sqrt[x]])/(4*Sqrt[x*(-1 + x^2)])
 
3.11.47.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.72 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.27, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {2467, 25, 1388, 2035, 25, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4+1}{\sqrt {x^3-x} \left (x^4-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^2-1} \int -\frac {x^4+1}{\sqrt {x} \sqrt {x^2-1} \left (1-x^4\right )}dx}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^2-1} \int \frac {x^4+1}{\sqrt {x} \sqrt {x^2-1} \left (1-x^4\right )}dx}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 1388

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^2-1} \int \frac {x^4+1}{\sqrt {x} \left (-x^2-1\right ) \left (x^2-1\right )^{3/2}}dx}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-1} \int -\frac {x^4+1}{\left (x^2-1\right )^{3/2} \left (x^2+1\right )}d\sqrt {x}}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2-1} \int \frac {x^4+1}{\left (x^2-1\right )^{3/2} \left (x^2+1\right )}d\sqrt {x}}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2-1} \int \left (\frac {x^2}{\left (x^2-1\right )^{3/2}}+\frac {2}{\left (x^2-1\right )^{3/2} \left (x^2+1\right )}-\frac {1}{\left (x^2-1\right )^{3/2}}\right )d\sqrt {x}}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-1} \left (\left (\frac {1}{8}-\frac {i}{8}\right ) \arctan \left (\frac {(1+i) \sqrt {x}}{\sqrt {x^2-1}}\right )+\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {x}}{\sqrt {x^2-1}}\right )+\frac {\sqrt {x}}{2 \sqrt {x^2-1}}\right )}{\sqrt {x^3-x}}\)

input
Int[(1 + x^4)/(Sqrt[-x + x^3]*(-1 + x^4)),x]
 
output
(-2*Sqrt[x]*Sqrt[-1 + x^2]*(Sqrt[x]/(2*Sqrt[-1 + x^2]) + (1/8 - I/8)*ArcTa 
n[((1 + I)*Sqrt[x])/Sqrt[-1 + x^2]] + (1/8 - I/8)*ArcTanh[((1 + I)*Sqrt[x] 
)/Sqrt[-1 + x^2]]))/Sqrt[-x + x^3]
 

3.11.47.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.11.47.4 Maple [A] (verified)

Time = 7.87 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.32

method result size
risch \(-\frac {x}{\sqrt {x \left (x^{2}-1\right )}}-\frac {\ln \left (\frac {x^{2}+2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{8}+\frac {\arctan \left (\frac {\sqrt {x^{3}-x}+x}{x}\right )}{4}+\frac {\ln \left (\frac {x^{2}-2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{8}+\frac {\arctan \left (\frac {\sqrt {x^{3}-x}-x}{x}\right )}{4}\) \(104\)
default \(\frac {\left (\arctan \left (\frac {\sqrt {x^{3}-x}+x}{x}\right )-\frac {\ln \left (\frac {x^{2}+2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{2}+\frac {\ln \left (\frac {x^{2}-2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{2}+\arctan \left (\frac {\sqrt {x^{3}-x}-x}{x}\right )\right ) \sqrt {x^{3}-x}-4 x}{4 \sqrt {x^{3}-x}}\) \(113\)
pseudoelliptic \(\frac {\left (\arctan \left (\frac {\sqrt {x^{3}-x}+x}{x}\right )-\frac {\ln \left (\frac {x^{2}+2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{2}+\frac {\ln \left (\frac {x^{2}-2 \sqrt {x^{3}-x}+2 x -1}{x}\right )}{2}+\arctan \left (\frac {\sqrt {x^{3}-x}-x}{x}\right )\right ) \sqrt {x^{3}-x}-4 x}{4 \sqrt {x^{3}-x}}\) \(113\)
elliptic \(-\frac {x}{\sqrt {x \left (x^{2}-1\right )}}+\frac {\sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticF}\left (\sqrt {1+x}, \frac {\sqrt {2}}{2}\right )}{2 \sqrt {x^{3}-x}}-\frac {\sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}-\frac {i \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}-\frac {\sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}+\frac {i \sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )}{4 \sqrt {x^{3}-x}}\) \(223\)
trager \(-\frac {\sqrt {x^{3}-x}}{x^{2}-1}+\frac {\ln \left (-\frac {300672 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2} x^{2}-451008 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2} x -11052 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x^{2}+14400 \sqrt {x^{3}-x}\, \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )-300672 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2}+3528 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x +91 x^{2}-150 \sqrt {x^{3}-x}+11052 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+26 x -91}{{\left (72 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x -144 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+x +3\right )}^{2}}\right )}{4}-9 \ln \left (-\frac {300672 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2} x^{2}-451008 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2} x -11052 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x^{2}+14400 \sqrt {x^{3}-x}\, \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )-300672 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2}+3528 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x +91 x^{2}-150 \sqrt {x^{3}-x}+11052 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+26 x -91}{{\left (72 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x -144 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+x +3\right )}^{2}}\right ) \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+9 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) \ln \left (\frac {-150336 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2} x^{2}+225504 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2} x +2826 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x^{2}+7200 \sqrt {x^{3}-x}\, \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+150336 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )^{2}-10764 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x -8 x^{2}-125 \sqrt {x^{3}-x}-2826 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )+112 x +8}{{\left (72 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right ) x -144 \operatorname {RootOf}\left (2592 \textit {\_Z}^{2}-72 \textit {\_Z} +1\right )-3 x +1\right )}^{2}}\right )\) \(559\)

input
int((x^4+1)/(x^3-x)^(1/2)/(x^4-1),x,method=_RETURNVERBOSE)
 
output
-x/(x*(x^2-1))^(1/2)-1/8*ln((x^2+2*(x^3-x)^(1/2)+2*x-1)/x)+1/4*arctan(((x^ 
3-x)^(1/2)+x)/x)+1/8*ln((x^2-2*(x^3-x)^(1/2)+2*x-1)/x)+1/4*arctan(((x^3-x) 
^(1/2)-x)/x)
 
3.11.47.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.33 \[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\frac {2 \, {\left (x^{2} - 1\right )} \arctan \left (\frac {x^{2} - 2 \, x - 1}{2 \, \sqrt {x^{3} - x}}\right ) + {\left (x^{2} - 1\right )} \log \left (\frac {x^{4} + 8 \, x^{3} + 2 \, x^{2} - 4 \, \sqrt {x^{3} - x} {\left (x^{2} + 2 \, x - 1\right )} - 8 \, x + 1}{x^{4} + 2 \, x^{2} + 1}\right ) - 8 \, \sqrt {x^{3} - x}}{8 \, {\left (x^{2} - 1\right )}} \]

input
integrate((x^4+1)/(x^3-x)^(1/2)/(x^4-1),x, algorithm="fricas")
 
output
1/8*(2*(x^2 - 1)*arctan(1/2*(x^2 - 2*x - 1)/sqrt(x^3 - x)) + (x^2 - 1)*log 
((x^4 + 8*x^3 + 2*x^2 - 4*sqrt(x^3 - x)*(x^2 + 2*x - 1) - 8*x + 1)/(x^4 + 
2*x^2 + 1)) - 8*sqrt(x^3 - x))/(x^2 - 1)
 
3.11.47.6 Sympy [F]

\[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\int \frac {x^{4} + 1}{\sqrt {x \left (x - 1\right ) \left (x + 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}\, dx \]

input
integrate((x**4+1)/(x**3-x)**(1/2)/(x**4-1),x)
 
output
Integral((x**4 + 1)/(sqrt(x*(x - 1)*(x + 1))*(x - 1)*(x + 1)*(x**2 + 1)), 
x)
 
3.11.47.7 Maxima [F]

\[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\int { \frac {x^{4} + 1}{{\left (x^{4} - 1\right )} \sqrt {x^{3} - x}} \,d x } \]

input
integrate((x^4+1)/(x^3-x)^(1/2)/(x^4-1),x, algorithm="maxima")
 
output
integrate((x^4 + 1)/((x^4 - 1)*sqrt(x^3 - x)), x)
 
3.11.47.8 Giac [F]

\[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\int { \frac {x^{4} + 1}{{\left (x^{4} - 1\right )} \sqrt {x^{3} - x}} \,d x } \]

input
integrate((x^4+1)/(x^3-x)^(1/2)/(x^4-1),x, algorithm="giac")
 
output
integrate((x^4 + 1)/((x^4 - 1)*sqrt(x^3 - x)), x)
 
3.11.47.9 Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 232, normalized size of antiderivative = 2.94 \[ \int \frac {1+x^4}{\sqrt {-x+x^3} \left (-1+x^4\right )} \, dx=\frac {\sqrt {-x}\,\left (\frac {\sin \left (2\,\mathrm {asin}\left (\sqrt {-x}\right )\right )}{4\,\sqrt {1-x}}+\frac {\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{2}\right )\,\sqrt {1-x}\,\sqrt {x+1}}{\sqrt {x^3-x}}+\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (-\mathrm {i};\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}+\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (1{}\mathrm {i};\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}-\frac {2\,\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}+\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\left (\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )-\frac {\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{2}+\frac {\sqrt {-x}\,\sqrt {1-x}}{2\,\sqrt {x+1}}\right )}{\sqrt {x^3-x}} \]

input
int((x^4 + 1)/((x^3 - x)^(1/2)*(x^4 - 1)),x)
 
output
((-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticPi(-1i, asin((-x)^(1/2)), 
-1))/(x^3 - x)^(1/2) - (2*(-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticF 
(asin((-x)^(1/2)), -1))/(x^3 - x)^(1/2) + ((-x)^(1/2)*(1 - x)^(1/2)*(x + 1 
)^(1/2)*ellipticPi(1i, asin((-x)^(1/2)), -1))/(x^3 - x)^(1/2) + ((-x)^(1/2 
)*(sin(2*asin((-x)^(1/2)))/(4*(1 - x)^(1/2)) + ellipticE(asin((-x)^(1/2)), 
 -1)/2)*(1 - x)^(1/2)*(x + 1)^(1/2))/(x^3 - x)^(1/2) + ((-x)^(1/2)*(1 - x) 
^(1/2)*(x + 1)^(1/2)*(ellipticF(asin((-x)^(1/2)), -1) - ellipticE(asin((-x 
)^(1/2)), -1)/2 + ((-x)^(1/2)*(1 - x)^(1/2))/(2*(x + 1)^(1/2))))/(x^3 - x) 
^(1/2)