3.11.51 \(\int \frac {(-4+x^6) (2-x^4+x^6)^{5/2}}{x^7 (2+x^6)^2} \, dx\) [1051]

3.11.51.1 Optimal result
3.11.51.2 Mathematica [A] (verified)
3.11.51.3 Rubi [F]
3.11.51.4 Maple [A] (verified)
3.11.51.5 Fricas [A] (verification not implemented)
3.11.51.6 Sympy [F]
3.11.51.7 Maxima [F]
3.11.51.8 Giac [F]
3.11.51.9 Mupad [F(-1)]

3.11.51.1 Optimal result

Integrand size = 30, antiderivative size = 79 \[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=\frac {\sqrt {2-x^4+x^6} \left (8-28 x^4+8 x^6-3 x^8-14 x^{10}+2 x^{12}\right )}{6 x^6 \left (2+x^6\right )}-\frac {5}{2} \arctan \left (\frac {x^2}{\sqrt {2-x^4+x^6}}\right ) \]

output
1/6*(x^6-x^4+2)^(1/2)*(2*x^12-14*x^10-3*x^8+8*x^6-28*x^4+8)/x^6/(x^6+2)-5/ 
2*arctan(x^2/(x^6-x^4+2)^(1/2))
 
3.11.51.2 Mathematica [A] (verified)

Time = 1.69 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00 \[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=\frac {\sqrt {2-x^4+x^6} \left (8-28 x^4+8 x^6-3 x^8-14 x^{10}+2 x^{12}\right )}{6 x^6 \left (2+x^6\right )}-\frac {5}{2} \arctan \left (\frac {x^2}{\sqrt {2-x^4+x^6}}\right ) \]

input
Integrate[((-4 + x^6)*(2 - x^4 + x^6)^(5/2))/(x^7*(2 + x^6)^2),x]
 
output
(Sqrt[2 - x^4 + x^6]*(8 - 28*x^4 + 8*x^6 - 3*x^8 - 14*x^10 + 2*x^12))/(6*x 
^6*(2 + x^6)) - (5*ArcTan[x^2/Sqrt[2 - x^4 + x^6]])/2
 
3.11.51.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^6-4\right ) \left (x^6-x^4+2\right )^{5/2}}{x^7 \left (x^6+2\right )^2} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {5 \left (x^6-x^4+2\right )^{5/2}}{4 x}-\frac {\left (x^6-x^4+2\right )^{5/2}}{x^7}-\frac {5 \left (x^6-x^4+2\right )^{5/2} x^5}{4 \left (x^6+2\right )}-\frac {3 \left (x^6-x^4+2\right )^{5/2} x^5}{2 \left (x^6+2\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {3}{4} \text {Subst}\left (\int \frac {x^2 \left (x^3-x^2+2\right )^{5/2}}{\left (x^3+2\right )^2}dx,x,x^2\right )+\frac {10935 \sqrt {3} \left (x^6-x^4+2\right )^{5/2} \text {Subst}\left (\int \frac {\left (x+\frac {1+\left (26-15 \sqrt {3}\right )^{2/3}}{3 \sqrt [3]{26-15 \sqrt {3}}}\right )^{5/2} \left (x^2-\frac {\left (1+\left (26-15 \sqrt {3}\right )^{2/3}\right ) x}{3 \sqrt [3]{26-15 \sqrt {3}}}+\frac {1}{9} \left (-1+\frac {1}{\left (26-15 \sqrt {3}\right )^{2/3}}+\left (26-15 \sqrt {3}\right )^{2/3}\right )\right )^{5/2}}{x+\frac {1}{3}}dx,x,\frac {1}{3} \left (3 x^2-1\right )\right )}{8 \left (3 x^2+\sqrt [3]{26-15 \sqrt {3}}+\frac {1}{\sqrt [3]{26-15 \sqrt {3}}}-1\right )^{5/2} \left (\left (3 x^2-1\right )^2+\frac {\left (1+\left (26-15 \sqrt {3}\right )^{2/3}\right ) \left (1-3 x^2\right )}{\sqrt [3]{26-15 \sqrt {3}}}+\left (26-15 \sqrt {3}\right )^{2/3}+\frac {1}{\left (26-15 \sqrt {3}\right )^{2/3}}-1\right )^{5/2}}+\frac {5}{24} \int \frac {\left (x^6-x^4+2\right )^{5/2}}{\sqrt [6]{-2}-x}dx+\frac {5}{24} \int \frac {\left (x^6-x^4+2\right )^{5/2}}{-x-\sqrt [6]{-2} \sqrt [3]{-1}}dx+\frac {5}{24} \int \frac {\left (x^6-x^4+2\right )^{5/2}}{\sqrt [6]{-2} (-1)^{2/3}-x}dx-\frac {5}{24} \int \frac {\left (x^6-x^4+2\right )^{5/2}}{x+\sqrt [6]{-2}}dx-\frac {5}{24} \int \frac {\left (x^6-x^4+2\right )^{5/2}}{x-\sqrt [6]{-2} \sqrt [3]{-1}}dx-\frac {5}{24} \int \frac {\left (x^6-x^4+2\right )^{5/2}}{x+\sqrt [6]{-2} (-1)^{2/3}}dx-\int \frac {\left (x^6-x^4+2\right )^{5/2}}{x^7}dx\)

input
Int[((-4 + x^6)*(2 - x^4 + x^6)^(5/2))/(x^7*(2 + x^6)^2),x]
 
output
$Aborted
 

3.11.51.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.11.51.4 Maple [A] (verified)

Time = 6.24 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.03

method result size
pseudoelliptic \(\frac {15 \left (x^{12}+2 x^{6}\right ) \arctan \left (\frac {\sqrt {x^{6}-x^{4}+2}}{x^{2}}\right )+2 \left (x^{12}-7 x^{10}-\frac {3}{2} x^{8}+4 x^{6}-14 x^{4}+4\right ) \sqrt {x^{6}-x^{4}+2}}{6 \left (x^{6}+2\right ) x^{6}}\) \(81\)
trager \(\frac {\sqrt {x^{6}-x^{4}+2}\, \left (2 x^{12}-14 x^{10}-3 x^{8}+8 x^{6}-28 x^{4}+8\right )}{6 x^{6} \left (x^{6}+2\right )}+\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{6}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \sqrt {x^{6}-x^{4}+2}\, x^{2}-2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{6}+2}\right )}{4}\) \(119\)
risch \(\frac {2 x^{18}-16 x^{16}+11 x^{14}+15 x^{12}-64 x^{10}+22 x^{8}+24 x^{6}-64 x^{4}+16}{6 \left (x^{6}+2\right ) \sqrt {x^{6}-x^{4}+2}\, x^{6}}-\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{6}-2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \sqrt {x^{6}-x^{4}+2}\, x^{2}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{6}+2}\right )}{4}\) \(133\)

input
int((x^6-4)*(x^6-x^4+2)^(5/2)/x^7/(x^6+2)^2,x,method=_RETURNVERBOSE)
 
output
1/6*(15*(x^12+2*x^6)*arctan(1/x^2*(x^6-x^4+2)^(1/2))+2*(x^12-7*x^10-3/2*x^ 
8+4*x^6-14*x^4+4)*(x^6-x^4+2)^(1/2))/(x^6+2)/x^6
 
3.11.51.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.22 \[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=-\frac {15 \, {\left (x^{12} + 2 \, x^{6}\right )} \arctan \left (\frac {2 \, \sqrt {x^{6} - x^{4} + 2} x^{2}}{x^{6} - 2 \, x^{4} + 2}\right ) - 2 \, {\left (2 \, x^{12} - 14 \, x^{10} - 3 \, x^{8} + 8 \, x^{6} - 28 \, x^{4} + 8\right )} \sqrt {x^{6} - x^{4} + 2}}{12 \, {\left (x^{12} + 2 \, x^{6}\right )}} \]

input
integrate((x^6-4)*(x^6-x^4+2)^(5/2)/x^7/(x^6+2)^2,x, algorithm="fricas")
 
output
-1/12*(15*(x^12 + 2*x^6)*arctan(2*sqrt(x^6 - x^4 + 2)*x^2/(x^6 - 2*x^4 + 2 
)) - 2*(2*x^12 - 14*x^10 - 3*x^8 + 8*x^6 - 28*x^4 + 8)*sqrt(x^6 - x^4 + 2) 
)/(x^12 + 2*x^6)
 
3.11.51.6 Sympy [F]

\[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=\int \frac {\left (\left (x^{2} + 1\right ) \left (x^{4} - 2 x^{2} + 2\right )\right )^{\frac {5}{2}} \left (x^{3} - 2\right ) \left (x^{3} + 2\right )}{x^{7} \left (x^{6} + 2\right )^{2}}\, dx \]

input
integrate((x**6-4)*(x**6-x**4+2)**(5/2)/x**7/(x**6+2)**2,x)
 
output
Integral(((x**2 + 1)*(x**4 - 2*x**2 + 2))**(5/2)*(x**3 - 2)*(x**3 + 2)/(x* 
*7*(x**6 + 2)**2), x)
 
3.11.51.7 Maxima [F]

\[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=\int { \frac {{\left (x^{6} - x^{4} + 2\right )}^{\frac {5}{2}} {\left (x^{6} - 4\right )}}{{\left (x^{6} + 2\right )}^{2} x^{7}} \,d x } \]

input
integrate((x^6-4)*(x^6-x^4+2)^(5/2)/x^7/(x^6+2)^2,x, algorithm="maxima")
 
output
integrate((x^6 - x^4 + 2)^(5/2)*(x^6 - 4)/((x^6 + 2)^2*x^7), x)
 
3.11.51.8 Giac [F]

\[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=\int { \frac {{\left (x^{6} - x^{4} + 2\right )}^{\frac {5}{2}} {\left (x^{6} - 4\right )}}{{\left (x^{6} + 2\right )}^{2} x^{7}} \,d x } \]

input
integrate((x^6-4)*(x^6-x^4+2)^(5/2)/x^7/(x^6+2)^2,x, algorithm="giac")
 
output
integrate((x^6 - x^4 + 2)^(5/2)*(x^6 - 4)/((x^6 + 2)^2*x^7), x)
 
3.11.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-4+x^6\right ) \left (2-x^4+x^6\right )^{5/2}}{x^7 \left (2+x^6\right )^2} \, dx=\int \frac {\left (x^6-4\right )\,{\left (x^6-x^4+2\right )}^{5/2}}{x^7\,{\left (x^6+2\right )}^2} \,d x \]

input
int(((x^6 - 4)*(x^6 - x^4 + 2)^(5/2))/(x^7*(x^6 + 2)^2),x)
 
output
int(((x^6 - 4)*(x^6 - x^4 + 2)^(5/2))/(x^7*(x^6 + 2)^2), x)