3.12.8 \(\int \frac {x^5 (-4 b+5 a x^2)}{\sqrt [4]{-b+a x^2} (b-b x^8+a x^{10})} \, dx\) [1108]

3.12.8.1 Optimal result
3.12.8.2 Mathematica [A] (verified)
3.12.8.3 Rubi [F]
3.12.8.4 Maple [N/A] (verified)
3.12.8.5 Fricas [C] (verification not implemented)
3.12.8.6 Sympy [N/A]
3.12.8.7 Maxima [N/A]
3.12.8.8 Giac [F(-1)]
3.12.8.9 Mupad [B] (verification not implemented)

3.12.8.1 Optimal result

Integrand size = 42, antiderivative size = 82 \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\frac {1}{2} a \text {RootSum}\left [a^4 b+b^4 \text {$\#$1}^4+4 b^3 \text {$\#$1}^8+6 b^2 \text {$\#$1}^{12}+4 b \text {$\#$1}^{16}+\text {$\#$1}^{20}\&,\frac {\log \left (\sqrt [4]{-b+a x^2}-\text {$\#$1}\right )}{b \text {$\#$1}+\text {$\#$1}^5}\&\right ] \]

output
Unintegrable
 
3.12.8.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00 \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\frac {1}{2} a \text {RootSum}\left [a^4 b+b^4 \text {$\#$1}^4+4 b^3 \text {$\#$1}^8+6 b^2 \text {$\#$1}^{12}+4 b \text {$\#$1}^{16}+\text {$\#$1}^{20}\&,\frac {\log \left (\sqrt [4]{-b+a x^2}-\text {$\#$1}\right )}{b \text {$\#$1}+\text {$\#$1}^5}\&\right ] \]

input
Integrate[(x^5*(-4*b + 5*a*x^2))/((-b + a*x^2)^(1/4)*(b - b*x^8 + a*x^10)) 
,x]
 
output
(a*RootSum[a^4*b + b^4*#1^4 + 4*b^3*#1^8 + 6*b^2*#1^12 + 4*b*#1^16 + #1^20 
 & , Log[(-b + a*x^2)^(1/4) - #1]/(b*#1 + #1^5) & ])/2
 
3.12.8.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (5 a x^2-4 b\right )}{\sqrt [4]{a x^2-b} \left (a x^{10}-b x^8+b\right )} \, dx\)

\(\Big \downarrow \) 7283

\(\displaystyle \frac {1}{2} \int -\frac {x^4 \left (4 b-5 a x^2\right )}{\sqrt [4]{a x^2-b} \left (a x^{10}-b x^8+b\right )}dx^2\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {1}{2} \int \frac {x^4 \left (4 b-5 a x^2\right )}{\sqrt [4]{a x^2-b} \left (a x^{10}-b x^8+b\right )}dx^2\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 a \int \frac {x^4 \left (x^8+b\right )^2 \left (5 x^8+b\right )}{\left (x^8+b\right )^4 x^8+a^4 b}d\sqrt [4]{a x^2-b}\)

\(\Big \downarrow \) 7293

\(\displaystyle 2 a \int \left (\frac {5 x^{28}}{x^{40}+4 b x^{32}+6 b^2 x^{24}+4 b^3 x^{16}+b^4 x^8+a^4 b}+\frac {11 b x^{20}}{x^{40}+4 b x^{32}+6 b^2 x^{24}+4 b^3 x^{16}+b^4 x^8+a^4 b}+\frac {7 b^2 x^{12}}{x^{40}+4 b x^{32}+6 b^2 x^{24}+4 b^3 x^{16}+b^4 x^8+a^4 b}+\frac {b^3 x^4}{x^{40}+4 b x^{32}+6 b^2 x^{24}+4 b^3 x^{16}+b^4 x^8+a^4 b}\right )d\sqrt [4]{a x^2-b}\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 a \left (b^3 \int \frac {x^4}{\left (x^8+b\right )^4 x^8+a^4 b}d\sqrt [4]{a x^2-b}+7 b^2 \int \frac {x^{12}}{\left (x^8+b\right )^4 x^8+a^4 b}d\sqrt [4]{a x^2-b}+5 \int \frac {x^{28}}{\left (x^8+b\right )^4 x^8+a^4 b}d\sqrt [4]{a x^2-b}+11 b \int \frac {x^{20}}{\left (x^8+b\right )^4 x^8+a^4 b}d\sqrt [4]{a x^2-b}\right )\)

input
Int[(x^5*(-4*b + 5*a*x^2))/((-b + a*x^2)^(1/4)*(b - b*x^8 + a*x^10)),x]
 
output
$Aborted
 

3.12.8.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7283
Int[(u_)*(x_)^(m_.), x_Symbol] :> With[{lst = PowerVariableExpn[u, m + 1, x 
]}, Simp[1/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x] 
, x], x, (lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], m + 1 
]] /; IntegerQ[m] && NeQ[m, -1] && NonsumQ[u] && (GtQ[m, 0] ||  !AlgebraicF 
unctionQ[u, x])
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.12.8.4 Maple [N/A] (verified)

Time = 1.06 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.89

method result size
pseudoelliptic \(\frac {a \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{20}+4 b \,\textit {\_Z}^{16}+6 b^{2} \textit {\_Z}^{12}+4 b^{3} \textit {\_Z}^{8}+b^{4} \textit {\_Z}^{4}+a^{4} b \right )}{\sum }\frac {\ln \left (\left (a \,x^{2}-b \right )^{\frac {1}{4}}-\textit {\_R} \right )}{\textit {\_R} \left (\textit {\_R}^{4}+b \right )}\right )}{2}\) \(73\)

input
int(x^5*(5*a*x^2-4*b)/(a*x^2-b)^(1/4)/(a*x^10-b*x^8+b),x,method=_RETURNVER 
BOSE)
 
output
1/2*a*sum(ln((a*x^2-b)^(1/4)-_R)/_R/(_R^4+b),_R=RootOf(_Z^20+4*_Z^16*b+6*_ 
Z^12*b^2+4*_Z^8*b^3+_Z^4*b^4+a^4*b))
 
3.12.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.32 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.76 \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\frac {1}{2} \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left ({\left (a x^{2} - b\right )}^{\frac {1}{4}} x^{2} + b \left (-\frac {1}{b}\right )^{\frac {3}{4}}\right ) - \frac {1}{2} i \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left ({\left (a x^{2} - b\right )}^{\frac {1}{4}} x^{2} + i \, b \left (-\frac {1}{b}\right )^{\frac {3}{4}}\right ) + \frac {1}{2} i \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left ({\left (a x^{2} - b\right )}^{\frac {1}{4}} x^{2} - i \, b \left (-\frac {1}{b}\right )^{\frac {3}{4}}\right ) - \frac {1}{2} \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left ({\left (a x^{2} - b\right )}^{\frac {1}{4}} x^{2} - b \left (-\frac {1}{b}\right )^{\frac {3}{4}}\right ) \]

input
integrate(x^5*(5*a*x^2-4*b)/(a*x^2-b)^(1/4)/(a*x^10-b*x^8+b),x, algorithm= 
"fricas")
 
output
1/2*(-1/b)^(1/4)*log((a*x^2 - b)^(1/4)*x^2 + b*(-1/b)^(3/4)) - 1/2*I*(-1/b 
)^(1/4)*log((a*x^2 - b)^(1/4)*x^2 + I*b*(-1/b)^(3/4)) + 1/2*I*(-1/b)^(1/4) 
*log((a*x^2 - b)^(1/4)*x^2 - I*b*(-1/b)^(3/4)) - 1/2*(-1/b)^(1/4)*log((a*x 
^2 - b)^(1/4)*x^2 - b*(-1/b)^(3/4))
 
3.12.8.6 Sympy [N/A]

Not integrable

Time = 101.68 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.44 \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\int \frac {x^{5} \cdot \left (5 a x^{2} - 4 b\right )}{\sqrt [4]{a x^{2} - b} \left (a x^{10} - b x^{8} + b\right )}\, dx \]

input
integrate(x**5*(5*a*x**2-4*b)/(a*x**2-b)**(1/4)/(a*x**10-b*x**8+b),x)
 
output
Integral(x**5*(5*a*x**2 - 4*b)/((a*x**2 - b)**(1/4)*(a*x**10 - b*x**8 + b) 
), x)
 
3.12.8.7 Maxima [N/A]

Not integrable

Time = 0.24 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.51 \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\int { \frac {{\left (5 \, a x^{2} - 4 \, b\right )} x^{5}}{{\left (a x^{10} - b x^{8} + b\right )} {\left (a x^{2} - b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x^5*(5*a*x^2-4*b)/(a*x^2-b)^(1/4)/(a*x^10-b*x^8+b),x, algorithm= 
"maxima")
 
output
integrate((5*a*x^2 - 4*b)*x^5/((a*x^10 - b*x^8 + b)*(a*x^2 - b)^(1/4)), x)
 
3.12.8.8 Giac [F(-1)]

Timed out. \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\text {Timed out} \]

input
integrate(x^5*(5*a*x^2-4*b)/(a*x^2-b)^(1/4)/(a*x^10-b*x^8+b),x, algorithm= 
"giac")
 
output
Timed out
 
3.12.8.9 Mupad [B] (verification not implemented)

Time = 14.50 (sec) , antiderivative size = 3940, normalized size of antiderivative = 48.05 \[ \int \frac {x^5 \left (-4 b+5 a x^2\right )}{\sqrt [4]{-b+a x^2} \left (b-b x^8+a x^{10}\right )} \, dx=\text {Too large to display} \]

input
int(-(x^5*(4*b - 5*a*x^2))/((a*x^2 - b)^(1/4)*(b + a*x^10 - b*x^8)),x)
 
output
symsum(log(root(3840000000000*a^8*b^8*f^20 - 31250000000000*a^12*b^4*f^20 
- 209715200000*a^4*b^12*f^20 + 4294967296*b^16*f^20 + 95367431640625*a^16* 
f^20 - 29296875000000*a^12*b^3*f^16 + 15200000000000*a^8*b^7*f^16 - 190054 
4000000*a^4*b^11*f^16 + 69793218560*b^15*f^16 + 1626112000000*a^4*b^10*f^1 
2 + 2575000000000*a^8*b^6*f^12 + 17280532480*b^14*f^12 - 58112000000*a^4*b 
^9*f^8 + 1614807040*b^13*f^8 + 67174400*b^12*f^4 + 1048576*b^11, f, k)*(ro 
ot(3840000000000*a^8*b^8*f^20 - 31250000000000*a^12*b^4*f^20 - 20971520000 
0*a^4*b^12*f^20 + 4294967296*b^16*f^20 + 95367431640625*a^16*f^20 - 292968 
75000000*a^12*b^3*f^16 + 15200000000000*a^8*b^7*f^16 - 1900544000000*a^4*b 
^11*f^16 + 69793218560*b^15*f^16 + 1626112000000*a^4*b^10*f^12 + 257500000 
0000*a^8*b^6*f^12 + 17280532480*b^14*f^12 - 58112000000*a^4*b^9*f^8 + 1614 
807040*b^13*f^8 + 67174400*b^12*f^4 + 1048576*b^11, f, k)^3*(root(38400000 
00000*a^8*b^8*f^20 - 31250000000000*a^12*b^4*f^20 - 209715200000*a^4*b^12* 
f^20 + 4294967296*b^16*f^20 + 95367431640625*a^16*f^20 - 29296875000000*a^ 
12*b^3*f^16 + 15200000000000*a^8*b^7*f^16 - 1900544000000*a^4*b^11*f^16 + 
69793218560*b^15*f^16 + 1626112000000*a^4*b^10*f^12 + 2575000000000*a^8*b^ 
6*f^12 + 17280532480*b^14*f^12 - 58112000000*a^4*b^9*f^8 + 1614807040*b^13 
*f^8 + 67174400*b^12*f^4 + 1048576*b^11, f, k)*(root(3840000000000*a^8*b^8 
*f^20 - 31250000000000*a^12*b^4*f^20 - 209715200000*a^4*b^12*f^20 + 429496 
7296*b^16*f^20 + 95367431640625*a^16*f^20 - 29296875000000*a^12*b^3*f^1...