3.12.38 \(\int \frac {-1+x^4}{\sqrt {-x+x^3} (1+x^4)} \, dx\) [1138]

3.12.38.1 Optimal result
3.12.38.2 Mathematica [A] (verified)
3.12.38.3 Rubi [C] (verified)
3.12.38.4 Maple [A] (verified)
3.12.38.5 Fricas [C] (verification not implemented)
3.12.38.6 Sympy [F]
3.12.38.7 Maxima [F]
3.12.38.8 Giac [F]
3.12.38.9 Mupad [B] (verification not implemented)

3.12.38.1 Optimal result

Integrand size = 24, antiderivative size = 85 \[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=\frac {\arctan \left (\frac {2^{3/4} \sqrt {-x+x^3}}{1+\sqrt {2} x-x^2}\right )}{2^{3/4}}-\frac {\text {arctanh}\left (\frac {-\frac {1}{2^{3/4}}+\frac {x}{\sqrt [4]{2}}+\frac {x^2}{2^{3/4}}}{\sqrt {-x+x^3}}\right )}{2^{3/4}} \]

output
1/2*arctan(2^(3/4)*(x^3-x)^(1/2)/(1+x*2^(1/2)-x^2))*2^(1/4)-1/2*arctanh((- 
1/2*2^(1/4)+1/2*x*2^(3/4)+1/2*x^2*2^(1/4))/(x^3-x)^(1/2))*2^(1/4)
 
3.12.38.2 Mathematica [A] (verified)

Time = 0.43 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.25 \[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=\frac {\sqrt {x} \sqrt {-1+x^2} \left (\arctan \left (\frac {2^{3/4} \sqrt {x} \sqrt {-1+x^2}}{1+\sqrt {2} x-x^2}\right )-\text {arctanh}\left (\frac {2^{3/4} \sqrt {x} \sqrt {-1+x^2}}{-1+\sqrt {2} x+x^2}\right )\right )}{2^{3/4} \sqrt {x \left (-1+x^2\right )}} \]

input
Integrate[(-1 + x^4)/(Sqrt[-x + x^3]*(1 + x^4)),x]
 
output
(Sqrt[x]*Sqrt[-1 + x^2]*(ArcTan[(2^(3/4)*Sqrt[x]*Sqrt[-1 + x^2])/(1 + Sqrt 
[2]*x - x^2)] - ArcTanh[(2^(3/4)*Sqrt[x]*Sqrt[-1 + x^2])/(-1 + Sqrt[2]*x + 
 x^2)]))/(2^(3/4)*Sqrt[x*(-1 + x^2)])
 
3.12.38.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.27 (sec) , antiderivative size = 697, normalized size of antiderivative = 8.20, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {2467, 25, 1388, 2035, 25, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4-1}{\sqrt {x^3-x} \left (x^4+1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^2-1} \int -\frac {1-x^4}{\sqrt {x} \sqrt {x^2-1} \left (x^4+1\right )}dx}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^2-1} \int \frac {1-x^4}{\sqrt {x} \sqrt {x^2-1} \left (x^4+1\right )}dx}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 1388

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^2-1} \int \frac {\left (-x^2-1\right ) \sqrt {x^2-1}}{\sqrt {x} \left (x^4+1\right )}dx}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-1} \int -\frac {\sqrt {x^2-1} \left (x^2+1\right )}{x^4+1}d\sqrt {x}}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2-1} \int \frac {\sqrt {x^2-1} \left (x^2+1\right )}{x^4+1}d\sqrt {x}}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2-1} \int \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {x^2-1}}{x^2+i}-\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \sqrt {x^2-1}}{i-x^2}\right )d\sqrt {x}}{\sqrt {x^3-x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-1} \left (-\frac {(1+i) \sqrt {1-x} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),-1\right )}{\left (2 \sqrt {2}+(2+2 i)\right ) \sqrt {x^2-1}}-\frac {(1-i) \sqrt {1-x} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),-1\right )}{\left (2 \sqrt {2}+(2-2 i)\right ) \sqrt {x^2-1}}-\frac {(1+i) \sqrt {1-x} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),-1\right )}{\left (-2 \sqrt {2}+(2+2 i)\right ) \sqrt {x^2-1}}-\frac {(1-i) \sqrt {1-x} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),-1\right )}{\left (-2 \sqrt {2}+(2-2 i)\right ) \sqrt {x^2-1}}+\frac {\sqrt {x-1} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x-1}}\right ),\frac {1}{2}\right )}{2 \left (\sqrt {2}+(1+i)\right ) \sqrt {x^2-1}}+\frac {\sqrt {x-1} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x-1}}\right ),\frac {1}{2}\right )}{2 \left (\sqrt {2}+(1-i)\right ) \sqrt {x^2-1}}+\frac {\sqrt {x-1} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x-1}}\right ),\frac {1}{2}\right )}{2 \left (\sqrt {2}+(-1+i)\right ) \sqrt {x^2-1}}+\frac {\sqrt {x-1} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x-1}}\right ),\frac {1}{2}\right )}{2 \left (\sqrt {2}+(-1-i)\right ) \sqrt {x^2-1}}-\frac {\sqrt {x-1} \sqrt {x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x-1}}\right ),\frac {1}{2}\right )}{\sqrt {2} \sqrt {x^2-1}}+\frac {\sqrt {1-x} \sqrt {x+1} \operatorname {EllipticPi}\left (-\sqrt [4]{-1},\arcsin \left (\sqrt {x}\right ),-1\right )}{2 \sqrt {x^2-1}}+\frac {\sqrt {1-x} \sqrt {x+1} \operatorname {EllipticPi}\left (\sqrt [4]{-1},\arcsin \left (\sqrt {x}\right ),-1\right )}{2 \sqrt {x^2-1}}+\frac {\sqrt {1-x} \sqrt {x+1} \operatorname {EllipticPi}\left (-(-1)^{3/4},\arcsin \left (\sqrt {x}\right ),-1\right )}{2 \sqrt {x^2-1}}+\frac {\sqrt {1-x} \sqrt {x+1} \operatorname {EllipticPi}\left ((-1)^{3/4},\arcsin \left (\sqrt {x}\right ),-1\right )}{2 \sqrt {x^2-1}}\right )}{\sqrt {x^3-x}}\)

input
Int[(-1 + x^4)/(Sqrt[-x + x^3]*(1 + x^4)),x]
 
output
(-2*Sqrt[x]*Sqrt[-1 + x^2]*(((-1 + I)*Sqrt[1 - x]*Sqrt[1 + x]*EllipticF[Ar 
cSin[Sqrt[x]], -1])/(((2 - 2*I) - 2*Sqrt[2])*Sqrt[-1 + x^2]) - ((1 + I)*Sq 
rt[1 - x]*Sqrt[1 + x]*EllipticF[ArcSin[Sqrt[x]], -1])/(((2 + 2*I) - 2*Sqrt 
[2])*Sqrt[-1 + x^2]) - ((1 - I)*Sqrt[1 - x]*Sqrt[1 + x]*EllipticF[ArcSin[S 
qrt[x]], -1])/(((2 - 2*I) + 2*Sqrt[2])*Sqrt[-1 + x^2]) - ((1 + I)*Sqrt[1 - 
 x]*Sqrt[1 + x]*EllipticF[ArcSin[Sqrt[x]], -1])/(((2 + 2*I) + 2*Sqrt[2])*S 
qrt[-1 + x^2]) - (Sqrt[-1 + x]*Sqrt[1 + x]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[ 
x])/Sqrt[-1 + x]], 1/2])/(Sqrt[2]*Sqrt[-1 + x^2]) + (Sqrt[-1 + x]*Sqrt[1 + 
 x]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[x])/Sqrt[-1 + x]], 1/2])/(2*((-1 - I) + 
 Sqrt[2])*Sqrt[-1 + x^2]) + (Sqrt[-1 + x]*Sqrt[1 + x]*EllipticF[ArcSin[(Sq 
rt[2]*Sqrt[x])/Sqrt[-1 + x]], 1/2])/(2*((-1 + I) + Sqrt[2])*Sqrt[-1 + x^2] 
) + (Sqrt[-1 + x]*Sqrt[1 + x]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[x])/Sqrt[-1 + 
 x]], 1/2])/(2*((1 - I) + Sqrt[2])*Sqrt[-1 + x^2]) + (Sqrt[-1 + x]*Sqrt[1 
+ x]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[x])/Sqrt[-1 + x]], 1/2])/(2*((1 + I) + 
 Sqrt[2])*Sqrt[-1 + x^2]) + (Sqrt[1 - x]*Sqrt[1 + x]*EllipticPi[-(-1)^(1/4 
), ArcSin[Sqrt[x]], -1])/(2*Sqrt[-1 + x^2]) + (Sqrt[1 - x]*Sqrt[1 + x]*Ell 
ipticPi[(-1)^(1/4), ArcSin[Sqrt[x]], -1])/(2*Sqrt[-1 + x^2]) + (Sqrt[1 - x 
]*Sqrt[1 + x]*EllipticPi[-(-1)^(3/4), ArcSin[Sqrt[x]], -1])/(2*Sqrt[-1 + x 
^2]) + (Sqrt[1 - x]*Sqrt[1 + x]*EllipticPi[(-1)^(3/4), ArcSin[Sqrt[x]], -1 
])/(2*Sqrt[-1 + x^2])))/Sqrt[-x + x^3]
 

3.12.38.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.12.38.4 Maple [A] (verified)

Time = 8.57 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.22

method result size
default \(\frac {2^{\frac {1}{4}} \left (\ln \left (\frac {-2^{\frac {3}{4}} \sqrt {x^{3}-x}+x \sqrt {2}+x^{2}-1}{2^{\frac {3}{4}} \sqrt {x^{3}-x}+x \sqrt {2}+x^{2}-1}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \sqrt {x^{3}-x}+x}{x}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \sqrt {x^{3}-x}-x}{x}\right )\right )}{4}\) \(104\)
pseudoelliptic \(\frac {2^{\frac {1}{4}} \left (\ln \left (\frac {-2^{\frac {3}{4}} \sqrt {x^{3}-x}+x \sqrt {2}+x^{2}-1}{2^{\frac {3}{4}} \sqrt {x^{3}-x}+x \sqrt {2}+x^{2}-1}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \sqrt {x^{3}-x}+x}{x}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \sqrt {x^{3}-x}-x}{x}\right )\right )}{4}\) \(104\)
elliptic \(\frac {\sqrt {1+x}\, \sqrt {2-2 x}\, \sqrt {-x}\, \operatorname {EllipticF}\left (\sqrt {1+x}, \frac {\sqrt {2}}{2}\right )}{\sqrt {x^{3}-x}}+\frac {\sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )}{\sum }\frac {\underline {\hspace {1.25 ex}}\alpha \left (\underline {\hspace {1.25 ex}}\alpha ^{3}-\underline {\hspace {1.25 ex}}\alpha ^{2}+\underline {\hspace {1.25 ex}}\alpha -1\right ) \sqrt {1+x}\, \sqrt {1-x}\, \sqrt {-x}\, \operatorname {EllipticPi}\left (\sqrt {1+x}, -\frac {1}{2} \underline {\hspace {1.25 ex}}\alpha ^{3}+\frac {1}{2} \underline {\hspace {1.25 ex}}\alpha ^{2}-\frac {1}{2} \underline {\hspace {1.25 ex}}\alpha +\frac {1}{2}, \frac {\sqrt {2}}{2}\right )}{\sqrt {x \left (x^{2}-1\right )}}\right )}{4}\) \(119\)
trager \(\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right ) \ln \left (-\frac {8 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{4} x^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right )-12 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{4} x \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right )-8 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{4} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right )-50 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right ) x^{2}+7 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right ) x +50 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right )+78 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right ) x^{2}+200 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} \sqrt {x^{3}-x}+104 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right ) x -78 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}\right )-56 \sqrt {x^{3}-x}}{2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} x^{2}-3 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} x -2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}+6 x^{2}+8 x -6}\right )}{4}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right ) \ln \left (-\frac {8 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{5} x^{2}-12 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{5} x -8 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{5}+50 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{3} x^{2}-7 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{3} x -50 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{3}-200 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} \sqrt {x^{3}-x}+78 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right ) x^{2}+104 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right ) x -78 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )-56 \sqrt {x^{3}-x}}{2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} x^{2}-3 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2} x -2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+8\right )^{2}-6 x^{2}-8 x +6}\right )}{4}\) \(476\)

input
int((x^4-1)/(x^3-x)^(1/2)/(x^4+1),x,method=_RETURNVERBOSE)
 
output
1/4*2^(1/4)*(ln((-2^(3/4)*(x^3-x)^(1/2)+x*2^(1/2)+x^2-1)/(2^(3/4)*(x^3-x)^ 
(1/2)+x*2^(1/2)+x^2-1))+2*arctan((2^(1/4)*(x^3-x)^(1/2)+x)/x)+2*arctan((2^ 
(1/4)*(x^3-x)^(1/2)-x)/x))
 
3.12.38.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 265, normalized size of antiderivative = 3.12 \[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=-\left (\frac {1}{8} i + \frac {1}{8}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {x^{4} - 4 \, x^{2} - 2 \, \sqrt {2} {\left (i \, x^{3} - i \, x\right )} + \sqrt {x^{3} - x} {\left (2^{\frac {3}{4}} {\left (-\left (i - 1\right ) \, x^{2} + i - 1\right )} - \left (2 i + 2\right ) \cdot 2^{\frac {1}{4}} x\right )} + 1}{x^{4} + 1}\right ) + \left (\frac {1}{8} i + \frac {1}{8}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {x^{4} - 4 \, x^{2} - 2 \, \sqrt {2} {\left (i \, x^{3} - i \, x\right )} + \sqrt {x^{3} - x} {\left (2^{\frac {3}{4}} {\left (\left (i - 1\right ) \, x^{2} - i + 1\right )} + \left (2 i + 2\right ) \cdot 2^{\frac {1}{4}} x\right )} + 1}{x^{4} + 1}\right ) + \left (\frac {1}{8} i - \frac {1}{8}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {x^{4} - 4 \, x^{2} - 2 \, \sqrt {2} {\left (-i \, x^{3} + i \, x\right )} + \sqrt {x^{3} - x} {\left (2^{\frac {3}{4}} {\left (\left (i + 1\right ) \, x^{2} - i - 1\right )} + \left (2 i - 2\right ) \cdot 2^{\frac {1}{4}} x\right )} + 1}{x^{4} + 1}\right ) - \left (\frac {1}{8} i - \frac {1}{8}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {x^{4} - 4 \, x^{2} - 2 \, \sqrt {2} {\left (-i \, x^{3} + i \, x\right )} + \sqrt {x^{3} - x} {\left (2^{\frac {3}{4}} {\left (-\left (i + 1\right ) \, x^{2} + i + 1\right )} - \left (2 i - 2\right ) \cdot 2^{\frac {1}{4}} x\right )} + 1}{x^{4} + 1}\right ) \]

input
integrate((x^4-1)/(x^3-x)^(1/2)/(x^4+1),x, algorithm="fricas")
 
output
-(1/8*I + 1/8)*2^(1/4)*log((x^4 - 4*x^2 - 2*sqrt(2)*(I*x^3 - I*x) + sqrt(x 
^3 - x)*(2^(3/4)*(-(I - 1)*x^2 + I - 1) - (2*I + 2)*2^(1/4)*x) + 1)/(x^4 + 
 1)) + (1/8*I + 1/8)*2^(1/4)*log((x^4 - 4*x^2 - 2*sqrt(2)*(I*x^3 - I*x) + 
sqrt(x^3 - x)*(2^(3/4)*((I - 1)*x^2 - I + 1) + (2*I + 2)*2^(1/4)*x) + 1)/( 
x^4 + 1)) + (1/8*I - 1/8)*2^(1/4)*log((x^4 - 4*x^2 - 2*sqrt(2)*(-I*x^3 + I 
*x) + sqrt(x^3 - x)*(2^(3/4)*((I + 1)*x^2 - I - 1) + (2*I - 2)*2^(1/4)*x) 
+ 1)/(x^4 + 1)) - (1/8*I - 1/8)*2^(1/4)*log((x^4 - 4*x^2 - 2*sqrt(2)*(-I*x 
^3 + I*x) + sqrt(x^3 - x)*(2^(3/4)*(-(I + 1)*x^2 + I + 1) - (2*I - 2)*2^(1 
/4)*x) + 1)/(x^4 + 1))
 
3.12.38.6 Sympy [F]

\[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=\int \frac {\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}{\sqrt {x \left (x - 1\right ) \left (x + 1\right )} \left (x^{4} + 1\right )}\, dx \]

input
integrate((x**4-1)/(x**3-x)**(1/2)/(x**4+1),x)
 
output
Integral((x - 1)*(x + 1)*(x**2 + 1)/(sqrt(x*(x - 1)*(x + 1))*(x**4 + 1)), 
x)
 
3.12.38.7 Maxima [F]

\[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=\int { \frac {x^{4} - 1}{{\left (x^{4} + 1\right )} \sqrt {x^{3} - x}} \,d x } \]

input
integrate((x^4-1)/(x^3-x)^(1/2)/(x^4+1),x, algorithm="maxima")
 
output
integrate((x^4 - 1)/((x^4 + 1)*sqrt(x^3 - x)), x)
 
3.12.38.8 Giac [F]

\[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=\int { \frac {x^{4} - 1}{{\left (x^{4} + 1\right )} \sqrt {x^{3} - x}} \,d x } \]

input
integrate((x^4-1)/(x^3-x)^(1/2)/(x^4+1),x, algorithm="giac")
 
output
integrate((x^4 - 1)/((x^4 + 1)*sqrt(x^3 - x)), x)
 
3.12.38.9 Mupad [B] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 205, normalized size of antiderivative = 2.41 \[ \int \frac {-1+x^4}{\sqrt {-x+x^3} \left (1+x^4\right )} \, dx=\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (\sqrt {2}\,\left (-\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right );\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}+\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (\sqrt {2}\,\left (-\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right );\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}+\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (\sqrt {2}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right );\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}+\frac {\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\Pi \left (\sqrt {2}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right );\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}}-\frac {2\,\sqrt {-x}\,\sqrt {1-x}\,\sqrt {x+1}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-x}\right )\middle |-1\right )}{\sqrt {x^3-x}} \]

input
int((x^4 - 1)/((x^3 - x)^(1/2)*(x^4 + 1)),x)
 
output
((-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticPi(2^(1/2)*(- 1/2 - 1i/2), 
 asin((-x)^(1/2)), -1))/(x^3 - x)^(1/2) + ((-x)^(1/2)*(1 - x)^(1/2)*(x + 1 
)^(1/2)*ellipticPi(2^(1/2)*(- 1/2 + 1i/2), asin((-x)^(1/2)), -1))/(x^3 - x 
)^(1/2) + ((-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticPi(2^(1/2)*(1/2 
- 1i/2), asin((-x)^(1/2)), -1))/(x^3 - x)^(1/2) + ((-x)^(1/2)*(1 - x)^(1/2 
)*(x + 1)^(1/2)*ellipticPi(2^(1/2)*(1/2 + 1i/2), asin((-x)^(1/2)), -1))/(x 
^3 - x)^(1/2) - (2*(-x)^(1/2)*(1 - x)^(1/2)*(x + 1)^(1/2)*ellipticF(asin(( 
-x)^(1/2)), -1))/(x^3 - x)^(1/2)