3.13.41 \(\int \frac {-b+2 a x^2}{(b+a x^2) \sqrt [4]{b x^2+a x^4}} \, dx\) [1241]

3.13.41.1 Optimal result
3.13.41.2 Mathematica [A] (verified)
3.13.41.3 Rubi [A] (verified)
3.13.41.4 Maple [A] (verified)
3.13.41.5 Fricas [F(-1)]
3.13.41.6 Sympy [F]
3.13.41.7 Maxima [F]
3.13.41.8 Giac [B] (verification not implemented)
3.13.41.9 Mupad [F(-1)]

3.13.41.1 Optimal result

Integrand size = 35, antiderivative size = 90 \[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=-\frac {6 \left (b x^2+a x^4\right )^{3/4}}{x \left (b+a x^2\right )}+\frac {2 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )}{\sqrt [4]{a}}+\frac {2 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )}{\sqrt [4]{a}} \]

output
-6*(a*x^4+b*x^2)^(3/4)/x/(a*x^2+b)+2*arctan(a^(1/4)*x/(a*x^4+b*x^2)^(1/4)) 
/a^(1/4)+2*arctanh(a^(1/4)*x/(a*x^4+b*x^2)^(1/4))/a^(1/4)
 
3.13.41.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.22 \[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\frac {2 \sqrt {x} \left (-3 \sqrt [4]{a} \sqrt {x}+\sqrt [4]{b+a x^2} \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )+\sqrt [4]{b+a x^2} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )\right )}{\sqrt [4]{a} \sqrt [4]{x^2 \left (b+a x^2\right )}} \]

input
Integrate[(-b + 2*a*x^2)/((b + a*x^2)*(b*x^2 + a*x^4)^(1/4)),x]
 
output
(2*Sqrt[x]*(-3*a^(1/4)*Sqrt[x] + (b + a*x^2)^(1/4)*ArcTan[(a^(1/4)*Sqrt[x] 
)/(b + a*x^2)^(1/4)] + (b + a*x^2)^(1/4)*ArcTanh[(a^(1/4)*Sqrt[x])/(b + a* 
x^2)^(1/4)]))/(a^(1/4)*(x^2*(b + a*x^2))^(1/4))
 
3.13.41.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.32, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {2467, 25, 357, 266, 770, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 a x^2-b}{\left (a x^2+b\right ) \sqrt [4]{a x^4+b x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{a x^2+b} \int -\frac {b-2 a x^2}{\sqrt {x} \left (a x^2+b\right )^{5/4}}dx}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \int \frac {b-2 a x^2}{\sqrt {x} \left (a x^2+b\right )^{5/4}}dx}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 357

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (\frac {6 \sqrt {x}}{\sqrt [4]{a x^2+b}}-2 \int \frac {1}{\sqrt {x} \sqrt [4]{a x^2+b}}dx\right )}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (\frac {6 \sqrt {x}}{\sqrt [4]{a x^2+b}}-4 \int \frac {1}{\sqrt [4]{a x^2+b}}d\sqrt {x}\right )}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 770

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (\frac {6 \sqrt {x}}{\sqrt [4]{a x^2+b}}-4 \int \frac {1}{1-a x^2}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 756

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (\frac {6 \sqrt {x}}{\sqrt [4]{a x^2+b}}-4 \left (\frac {1}{2} \int \frac {1}{1-\sqrt {a} x}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}+\frac {1}{2} \int \frac {1}{\sqrt {a} x+1}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}\right )\right )}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (\frac {6 \sqrt {x}}{\sqrt [4]{a x^2+b}}-4 \left (\frac {1}{2} \int \frac {1}{1-\sqrt {a} x}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}+\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt [4]{a}}\right )\right )}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (\frac {6 \sqrt {x}}{\sqrt [4]{a x^2+b}}-4 \left (\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{2 \sqrt [4]{a}}\right )\right )}{\sqrt [4]{a x^4+b x^2}}\)

input
Int[(-b + 2*a*x^2)/((b + a*x^2)*(b*x^2 + a*x^4)^(1/4)),x]
 
output
-((Sqrt[x]*(b + a*x^2)^(1/4)*((6*Sqrt[x])/(b + a*x^2)^(1/4) - 4*(ArcTan[(a 
^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)]/(2*a^(1/4)) + ArcTanh[(a^(1/4)*Sqrt[x]) 
/(b + a*x^2)^(1/4)]/(2*a^(1/4)))))/(b*x^2 + a*x^4)^(1/4))
 

3.13.41.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 357
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_ 
Symbol] :> Simp[(b*c - a*d)*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*b*e*(m + 
1))), x] + Simp[d/b   Int[(e*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, 
b, c, d, e}, x] && NeQ[b*c - a*d, 0] && EqQ[m + 2*p + 3, 0] && LtQ[p, -1]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.13.41.4 Maple [A] (verified)

Time = 2.41 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.22

method result size
pseudoelliptic \(-\frac {2 \left (3 a^{\frac {1}{4}} x +\frac {\left (2 \arctan \left (\frac {\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )-\ln \left (\frac {a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}\right )\right ) \left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{2}\right )}{a^{\frac {1}{4}} \left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}\) \(110\)

input
int((2*a*x^2-b)/(a*x^2+b)/(a*x^4+b*x^2)^(1/4),x,method=_RETURNVERBOSE)
 
output
-2/a^(1/4)*(3*a^(1/4)*x+1/2*(2*arctan(1/a^(1/4)/x*(x^2*(a*x^2+b))^(1/4))-l 
n((a^(1/4)*x+(x^2*(a*x^2+b))^(1/4))/(-a^(1/4)*x+(x^2*(a*x^2+b))^(1/4))))*( 
x^2*(a*x^2+b))^(1/4))/(x^2*(a*x^2+b))^(1/4)
 
3.13.41.5 Fricas [F(-1)]

Timed out. \[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\text {Timed out} \]

input
integrate((2*a*x^2-b)/(a*x^2+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="fricas")
 
output
Timed out
 
3.13.41.6 Sympy [F]

\[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int \frac {2 a x^{2} - b}{\sqrt [4]{x^{2} \left (a x^{2} + b\right )} \left (a x^{2} + b\right )}\, dx \]

input
integrate((2*a*x**2-b)/(a*x**2+b)/(a*x**4+b*x**2)**(1/4),x)
 
output
Integral((2*a*x**2 - b)/((x**2*(a*x**2 + b))**(1/4)*(a*x**2 + b)), x)
 
3.13.41.7 Maxima [F]

\[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int { \frac {2 \, a x^{2} - b}{{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{2} + b\right )}} \,d x } \]

input
integrate((2*a*x^2-b)/(a*x^2+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="maxima")
 
output
integrate((2*a*x^2 - b)/((a*x^4 + b*x^2)^(1/4)*(a*x^2 + b)), x)
 
3.13.41.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 195 vs. \(2 (76) = 152\).

Time = 0.30 (sec) , antiderivative size = 195, normalized size of antiderivative = 2.17 \[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\frac {\sqrt {2} \left (-a\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} + 2 \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right )}{a} + \frac {\sqrt {2} \left (-a\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} - 2 \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right )}{a} - \frac {\sqrt {2} \left (-a\right )^{\frac {3}{4}} \log \left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{2}}}\right )}{2 \, a} + \frac {\sqrt {2} \left (-a\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{2}}}\right )}{2 \, a} - \frac {6}{{\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}}} \]

input
integrate((2*a*x^2-b)/(a*x^2+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="giac")
 
output
sqrt(2)*(-a)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) + 2*(a + b/x^2)^ 
(1/4))/(-a)^(1/4))/a + sqrt(2)*(-a)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(-a 
)^(1/4) - 2*(a + b/x^2)^(1/4))/(-a)^(1/4))/a - 1/2*sqrt(2)*(-a)^(3/4)*log( 
sqrt(2)*(-a)^(1/4)*(a + b/x^2)^(1/4) + sqrt(-a) + sqrt(a + b/x^2))/a + 1/2 
*sqrt(2)*(-a)^(3/4)*log(-sqrt(2)*(-a)^(1/4)*(a + b/x^2)^(1/4) + sqrt(-a) + 
 sqrt(a + b/x^2))/a - 6/(a + b/x^2)^(1/4)
 
3.13.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-b+2 a x^2}{\left (b+a x^2\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int -\frac {b-2\,a\,x^2}{\left (a\,x^2+b\right )\,{\left (a\,x^4+b\,x^2\right )}^{1/4}} \,d x \]

input
int(-(b - 2*a*x^2)/((b + a*x^2)*(a*x^4 + b*x^2)^(1/4)),x)
 
output
int(-(b - 2*a*x^2)/((b + a*x^2)*(a*x^4 + b*x^2)^(1/4)), x)