3.13.67 \(\int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx\) [1267]

3.13.67.1 Optimal result
3.13.67.2 Mathematica [A] (verified)
3.13.67.3 Rubi [A] (verified)
3.13.67.4 Maple [C] (warning: unable to verify)
3.13.67.5 Fricas [A] (verification not implemented)
3.13.67.6 Sympy [C] (verification not implemented)
3.13.67.7 Maxima [A] (verification not implemented)
3.13.67.8 Giac [A] (verification not implemented)
3.13.67.9 Mupad [B] (verification not implemented)

3.13.67.1 Optimal result

Integrand size = 13, antiderivative size = 92 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=\frac {\left (-1+x^4\right )^{2/3}}{4 x^4}-\frac {\arctan \left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{-1+x^4}}{\sqrt {3}}\right )}{4 \sqrt {3}}-\frac {1}{12} \log \left (1+\sqrt [3]{-1+x^4}\right )+\frac {1}{24} \log \left (1-\sqrt [3]{-1+x^4}+\left (-1+x^4\right )^{2/3}\right ) \]

output
1/4*(x^4-1)^(2/3)/x^4+1/12*3^(1/2)*arctan(-1/3*3^(1/2)+2/3*(x^4-1)^(1/3)*3 
^(1/2))-1/12*ln(1+(x^4-1)^(1/3))+1/24*ln(1-(x^4-1)^(1/3)+(x^4-1)^(2/3))
 
3.13.67.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.90 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=\frac {1}{24} \left (\frac {6 \left (-1+x^4\right )^{2/3}}{x^4}-2 \sqrt {3} \arctan \left (\frac {1-2 \sqrt [3]{-1+x^4}}{\sqrt {3}}\right )-2 \log \left (1+\sqrt [3]{-1+x^4}\right )+\log \left (1-\sqrt [3]{-1+x^4}+\left (-1+x^4\right )^{2/3}\right )\right ) \]

input
Integrate[1/(x^5*(-1 + x^4)^(1/3)),x]
 
output
((6*(-1 + x^4)^(2/3))/x^4 - 2*Sqrt[3]*ArcTan[(1 - 2*(-1 + x^4)^(1/3))/Sqrt 
[3]] - 2*Log[1 + (-1 + x^4)^(1/3)] + Log[1 - (-1 + x^4)^(1/3) + (-1 + x^4) 
^(2/3)])/24
 
3.13.67.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.79, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {798, 52, 68, 16, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^5 \sqrt [3]{x^4-1}} \, dx\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{4} \int \frac {1}{x^8 \sqrt [3]{x^4-1}}dx^4\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \int \frac {1}{x^4 \sqrt [3]{x^4-1}}dx^4+\frac {\left (x^4-1\right )^{2/3}}{x^4}\right )\)

\(\Big \downarrow \) 68

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (-\frac {3}{2} \int \frac {1}{\sqrt [3]{x^4-1}+1}d\sqrt [3]{x^4-1}+\frac {3}{2} \int \frac {1}{x^8-\sqrt [3]{x^4-1}+1}d\sqrt [3]{x^4-1}+\frac {\log \left (x^4\right )}{2}\right )+\frac {\left (x^4-1\right )^{2/3}}{x^4}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (\frac {3}{2} \int \frac {1}{x^8-\sqrt [3]{x^4-1}+1}d\sqrt [3]{x^4-1}+\frac {\log \left (x^4\right )}{2}-\frac {3}{2} \log \left (\sqrt [3]{x^4-1}+1\right )\right )+\frac {\left (x^4-1\right )^{2/3}}{x^4}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (-3 \int \frac {1}{-x^8-3}d\left (2 \sqrt [3]{x^4-1}-1\right )+\frac {\log \left (x^4\right )}{2}-\frac {3}{2} \log \left (\sqrt [3]{x^4-1}+1\right )\right )+\frac {\left (x^4-1\right )^{2/3}}{x^4}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{x^4-1}-1}{\sqrt {3}}\right )+\frac {\log \left (x^4\right )}{2}-\frac {3}{2} \log \left (\sqrt [3]{x^4-1}+1\right )\right )+\frac {\left (x^4-1\right )^{2/3}}{x^4}\right )\)

input
Int[1/(x^5*(-1 + x^4)^(1/3)),x]
 
output
((-1 + x^4)^(2/3)/x^4 + (Sqrt[3]*ArcTan[(-1 + 2*(-1 + x^4)^(1/3))/Sqrt[3]] 
 + Log[x^4]/2 - (3*Log[1 + (-1 + x^4)^(1/3)])/2)/3)/4
 

3.13.67.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 68
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 
3.13.67.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 4.64 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.04

method result size
risch \(\frac {\left (x^{4}-1\right )^{\frac {2}{3}}}{4 x^{4}}+\frac {\sqrt {3}\, \Gamma \left (\frac {2}{3}\right ) {\left (-\operatorname {signum}\left (x^{4}-1\right )\right )}^{\frac {1}{3}} \left (\frac {2 \pi \sqrt {3}\, x^{4} \operatorname {hypergeom}\left (\left [1, 1, \frac {4}{3}\right ], \left [2, 2\right ], x^{4}\right )}{9 \Gamma \left (\frac {2}{3}\right )}+\frac {2 \left (-\frac {\pi \sqrt {3}}{6}-\frac {3 \ln \left (3\right )}{2}+4 \ln \left (x \right )+i \pi \right ) \pi \sqrt {3}}{3 \Gamma \left (\frac {2}{3}\right )}\right )}{24 \pi \operatorname {signum}\left (x^{4}-1\right )^{\frac {1}{3}}}\) \(96\)
meijerg \(-\frac {\sqrt {3}\, \Gamma \left (\frac {2}{3}\right ) {\left (-\operatorname {signum}\left (x^{4}-1\right )\right )}^{\frac {1}{3}} \left (-\frac {4 \pi \sqrt {3}\, x^{4} \operatorname {hypergeom}\left (\left [1, 1, \frac {7}{3}\right ], \left [2, 3\right ], x^{4}\right )}{27 \Gamma \left (\frac {2}{3}\right )}-\frac {2 \left (2-\frac {\pi \sqrt {3}}{6}-\frac {3 \ln \left (3\right )}{2}+4 \ln \left (x \right )+i \pi \right ) \pi \sqrt {3}}{9 \Gamma \left (\frac {2}{3}\right )}+\frac {2 \pi \sqrt {3}}{3 \Gamma \left (\frac {2}{3}\right ) x^{4}}\right )}{8 \pi \operatorname {signum}\left (x^{4}-1\right )^{\frac {1}{3}}}\) \(97\)
pseudoelliptic \(\frac {2 \sqrt {3}\, \arctan \left (\frac {\left (2 \left (x^{4}-1\right )^{\frac {1}{3}}-1\right ) \sqrt {3}}{3}\right ) x^{4}-2 \ln \left (1+\left (x^{4}-1\right )^{\frac {1}{3}}\right ) x^{4}+\ln \left (1-\left (x^{4}-1\right )^{\frac {1}{3}}+\left (x^{4}-1\right )^{\frac {2}{3}}\right ) x^{4}+6 \left (x^{4}-1\right )^{\frac {2}{3}}}{24 \left (1+\left (x^{4}-1\right )^{\frac {1}{3}}\right ) \left (1-\left (x^{4}-1\right )^{\frac {1}{3}}+\left (x^{4}-1\right )^{\frac {2}{3}}\right )}\) \(107\)
trager \(\frac {\left (x^{4}-1\right )^{\frac {2}{3}}}{4 x^{4}}-\frac {\ln \left (-\frac {8852696853933772800 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )^{2} x^{4}+181557103383026640 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) x^{4}+183192551562286 x^{4}+74249290852441200 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) \left (x^{4}-1\right )^{\frac {2}{3}}-141643149662940364800 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )^{2}-433058965335588240 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) \left (x^{4}-1\right )^{\frac {1}{3}}+601470785188317 \left (x^{4}-1\right )^{\frac {2}{3}}-310581659433945600 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )+704594800261152 \left (x^{4}-1\right )^{\frac {1}{3}}-170107369307837}{x^{4}}\right )}{12}+\frac {\ln \left (-\frac {18286560000 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )^{2} x^{4}-390343680 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) x^{4}+195285 x^{4}+134531280 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) \left (x^{4}-1\right )^{\frac {2}{3}}-292584960000 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )^{2}+614684160 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) \left (x^{4}-1\right )^{\frac {1}{3}}-853728 \left (x^{4}-1\right )^{\frac {2}{3}}+886520880 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )-666879 \left (x^{4}-1\right )^{\frac {1}{3}}-377551}{x^{4}}\right )}{12}-60 \ln \left (-\frac {18286560000 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )^{2} x^{4}-390343680 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) x^{4}+195285 x^{4}+134531280 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) \left (x^{4}-1\right )^{\frac {2}{3}}-292584960000 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )^{2}+614684160 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right ) \left (x^{4}-1\right )^{\frac {1}{3}}-853728 \left (x^{4}-1\right )^{\frac {2}{3}}+886520880 \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )-666879 \left (x^{4}-1\right )^{\frac {1}{3}}-377551}{x^{4}}\right ) \operatorname {RootOf}\left (518400 \textit {\_Z}^{2}-720 \textit {\_Z} +1\right )\) \(430\)

input
int(1/x^5/(x^4-1)^(1/3),x,method=_RETURNVERBOSE)
 
output
1/4*(x^4-1)^(2/3)/x^4+1/24/Pi*3^(1/2)*GAMMA(2/3)/signum(x^4-1)^(1/3)*(-sig 
num(x^4-1))^(1/3)*(2/9*Pi*3^(1/2)/GAMMA(2/3)*x^4*hypergeom([1,1,4/3],[2,2] 
,x^4)+2/3*(-1/6*Pi*3^(1/2)-3/2*ln(3)+4*ln(x)+I*Pi)*Pi*3^(1/2)/GAMMA(2/3))
 
3.13.67.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.87 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=\frac {2 \, \sqrt {3} x^{4} \arctan \left (\frac {2}{3} \, \sqrt {3} {\left (x^{4} - 1\right )}^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) + x^{4} \log \left ({\left (x^{4} - 1\right )}^{\frac {2}{3}} - {\left (x^{4} - 1\right )}^{\frac {1}{3}} + 1\right ) - 2 \, x^{4} \log \left ({\left (x^{4} - 1\right )}^{\frac {1}{3}} + 1\right ) + 6 \, {\left (x^{4} - 1\right )}^{\frac {2}{3}}}{24 \, x^{4}} \]

input
integrate(1/x^5/(x^4-1)^(1/3),x, algorithm="fricas")
 
output
1/24*(2*sqrt(3)*x^4*arctan(2/3*sqrt(3)*(x^4 - 1)^(1/3) - 1/3*sqrt(3)) + x^ 
4*log((x^4 - 1)^(2/3) - (x^4 - 1)^(1/3) + 1) - 2*x^4*log((x^4 - 1)^(1/3) + 
 1) + 6*(x^4 - 1)^(2/3))/x^4
 
3.13.67.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.79 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.37 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=- \frac {\Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {4}{3} \\ \frac {7}{3} \end {matrix}\middle | {\frac {e^{2 i \pi }}{x^{4}}} \right )}}{4 x^{\frac {16}{3}} \Gamma \left (\frac {7}{3}\right )} \]

input
integrate(1/x**5/(x**4-1)**(1/3),x)
 
output
-gamma(4/3)*hyper((1/3, 4/3), (7/3,), exp_polar(2*I*pi)/x**4)/(4*x**(16/3) 
*gamma(7/3))
 
3.13.67.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.74 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=\frac {1}{12} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (x^{4} - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) + \frac {{\left (x^{4} - 1\right )}^{\frac {2}{3}}}{4 \, x^{4}} + \frac {1}{24} \, \log \left ({\left (x^{4} - 1\right )}^{\frac {2}{3}} - {\left (x^{4} - 1\right )}^{\frac {1}{3}} + 1\right ) - \frac {1}{12} \, \log \left ({\left (x^{4} - 1\right )}^{\frac {1}{3}} + 1\right ) \]

input
integrate(1/x^5/(x^4-1)^(1/3),x, algorithm="maxima")
 
output
1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^4 - 1)^(1/3) - 1)) + 1/4*(x^4 - 1)^( 
2/3)/x^4 + 1/24*log((x^4 - 1)^(2/3) - (x^4 - 1)^(1/3) + 1) - 1/12*log((x^4 
 - 1)^(1/3) + 1)
 
3.13.67.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.75 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=\frac {1}{12} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (x^{4} - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) + \frac {{\left (x^{4} - 1\right )}^{\frac {2}{3}}}{4 \, x^{4}} + \frac {1}{24} \, \log \left ({\left (x^{4} - 1\right )}^{\frac {2}{3}} - {\left (x^{4} - 1\right )}^{\frac {1}{3}} + 1\right ) - \frac {1}{12} \, \log \left ({\left | {\left (x^{4} - 1\right )}^{\frac {1}{3}} + 1 \right |}\right ) \]

input
integrate(1/x^5/(x^4-1)^(1/3),x, algorithm="giac")
 
output
1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^4 - 1)^(1/3) - 1)) + 1/4*(x^4 - 1)^( 
2/3)/x^4 + 1/24*log((x^4 - 1)^(2/3) - (x^4 - 1)^(1/3) + 1) - 1/12*log(abs( 
(x^4 - 1)^(1/3) + 1))
 
3.13.67.9 Mupad [B] (verification not implemented)

Time = 5.86 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^5 \sqrt [3]{-1+x^4}} \, dx=\frac {{\left (x^4-1\right )}^{2/3}}{4\,x^4}-\ln \left (9\,{\left (-\frac {1}{24}+\frac {\sqrt {3}\,1{}\mathrm {i}}{24}\right )}^2+\frac {{\left (x^4-1\right )}^{1/3}}{16}\right )\,\left (-\frac {1}{24}+\frac {\sqrt {3}\,1{}\mathrm {i}}{24}\right )+\ln \left (9\,{\left (\frac {1}{24}+\frac {\sqrt {3}\,1{}\mathrm {i}}{24}\right )}^2+\frac {{\left (x^4-1\right )}^{1/3}}{16}\right )\,\left (\frac {1}{24}+\frac {\sqrt {3}\,1{}\mathrm {i}}{24}\right )-\frac {\ln \left (\frac {{\left (x^4-1\right )}^{1/3}}{16}+\frac {1}{16}\right )}{12} \]

input
int(1/(x^5*(x^4 - 1)^(1/3)),x)
 
output
log(9*((3^(1/2)*1i)/24 + 1/24)^2 + (x^4 - 1)^(1/3)/16)*((3^(1/2)*1i)/24 + 
1/24) - log(9*((3^(1/2)*1i)/24 - 1/24)^2 + (x^4 - 1)^(1/3)/16)*((3^(1/2)*1 
i)/24 - 1/24) - log((x^4 - 1)^(1/3)/16 + 1/16)/12 + (x^4 - 1)^(2/3)/(4*x^4 
)