3.13.91 \(\int \frac {(2+x^3) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx\) [1291]

3.13.91.1 Optimal result
3.13.91.2 Mathematica [A] (verified)
3.13.91.3 Rubi [F]
3.13.91.4 Maple [A] (verified)
3.13.91.5 Fricas [B] (verification not implemented)
3.13.91.6 Sympy [F]
3.13.91.7 Maxima [F]
3.13.91.8 Giac [F]
3.13.91.9 Mupad [B] (verification not implemented)

3.13.91.1 Optimal result

Integrand size = 45, antiderivative size = 93 \[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=\frac {1}{5} \left (-5-\sqrt {5}\right ) \arctan \left (\frac {\sqrt {\frac {3}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt {-1-x^2+x^3}}\right )+\frac {1}{5} \left (5-\sqrt {5}\right ) \arctan \left (\frac {\sqrt {\frac {2}{3+\sqrt {5}}} x}{\sqrt {-1-x^2+x^3}}\right ) \]

output
1/5*(-5-5^(1/2))*arctan((1/2+1/2*5^(1/2))*x/(x^3-x^2-1)^(1/2))+1/5*(5-5^(1 
/2))*arctan(2^(1/2)/(3+5^(1/2))^(1/2)*x/(x^3-x^2-1)^(1/2))
 
3.13.91.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.83 \[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=\frac {1}{5} \left (-\left (\left (-5+\sqrt {5}\right ) \arctan \left (\frac {\left (-1+\sqrt {5}\right ) x}{2 \sqrt {-1-x^2+x^3}}\right )\right )-\left (5+\sqrt {5}\right ) \arctan \left (\frac {\left (1+\sqrt {5}\right ) x}{2 \sqrt {-1-x^2+x^3}}\right )\right ) \]

input
Integrate[((2 + x^3)*Sqrt[-1 - x^2 + x^3])/(1 - x^2 - 2*x^3 - x^4 + x^5 + 
x^6),x]
 
output
(-((-5 + Sqrt[5])*ArcTan[((-1 + Sqrt[5])*x)/(2*Sqrt[-1 - x^2 + x^3])]) - ( 
5 + Sqrt[5])*ArcTan[((1 + Sqrt[5])*x)/(2*Sqrt[-1 - x^2 + x^3])])/5
 
3.13.91.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^3+2\right ) \sqrt {x^3-x^2-1}}{x^6+x^5-x^4-2 x^3-x^2+1} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {\sqrt {x^3-x^2-1} x^3}{x^6+x^5-x^4-2 x^3-x^2+1}+\frac {2 \sqrt {x^3-x^2-1}}{x^6+x^5-x^4-2 x^3-x^2+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \int \frac {\sqrt {x^3-x^2-1}}{x^6+x^5-x^4-2 x^3-x^2+1}dx+\int \frac {x^3 \sqrt {x^3-x^2-1}}{x^6+x^5-x^4-2 x^3-x^2+1}dx\)

input
Int[((2 + x^3)*Sqrt[-1 - x^2 + x^3])/(1 - x^2 - 2*x^3 - x^4 + x^5 + x^6),x 
]
 
output
$Aborted
 

3.13.91.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.13.91.4 Maple [A] (verified)

Time = 11.02 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.76

method result size
default \(-\frac {\left (\left (-\sqrt {5}-1\right ) \arctan \left (\frac {2 \sqrt {x^{3}-x^{2}-1}}{x \left (\sqrt {5}+1\right )}\right )+\left (\sqrt {5}-1\right ) \arctan \left (\frac {2 \sqrt {x^{3}-x^{2}-1}}{x \left (\sqrt {5}-1\right )}\right )\right ) \sqrt {5}}{5}\) \(71\)
pseudoelliptic \(-\frac {\left (\left (-\sqrt {5}-1\right ) \arctan \left (\frac {2 \sqrt {x^{3}-x^{2}-1}}{x \left (\sqrt {5}+1\right )}\right )+\left (\sqrt {5}-1\right ) \arctan \left (\frac {2 \sqrt {x^{3}-x^{2}-1}}{x \left (\sqrt {5}-1\right )}\right )\right ) \sqrt {5}}{5}\) \(71\)
trager \(5 \ln \left (\frac {175 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{5} x^{2}-35 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3} x^{3}+230 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3} x^{2}+30 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{2} \sqrt {x^{3}-x^{2}-1}\, x -18 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) x^{3}+35 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3}+72 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) x^{2}+16 \sqrt {x^{3}-x^{2}-1}\, x +18 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )}{5 x^{2} \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{2}+x^{3}+2 x^{2}-1}\right ) \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3}+3 \ln \left (\frac {175 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{5} x^{2}-35 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3} x^{3}+230 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3} x^{2}+30 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{2} \sqrt {x^{3}-x^{2}-1}\, x -18 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) x^{3}+35 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3}+72 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) x^{2}+16 \sqrt {x^{3}-x^{2}-1}\, x +18 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )}{5 x^{2} \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{2}+x^{3}+2 x^{2}-1}\right ) \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )-\operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {75 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{5} x^{2}+15 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3} x^{3}-5 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3} x^{2}+30 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{2} \sqrt {x^{3}-x^{2}-1}\, x +2 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) x^{3}-15 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{3}-2 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right ) x^{2}+2 \sqrt {x^{3}-x^{2}-1}\, x -2 \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )}{5 x^{2} \operatorname {RootOf}\left (25 \textit {\_Z}^{4}+15 \textit {\_Z}^{2}+1\right )^{2}-x^{3}+x^{2}+1}\right )\) \(674\)
elliptic \(\text {Expression too large to display}\) \(2877\)

input
int((x^3+2)*(x^3-x^2-1)^(1/2)/(x^6+x^5-x^4-2*x^3-x^2+1),x,method=_RETURNVE 
RBOSE)
 
output
-1/5*((-5^(1/2)-1)*arctan(2*(x^3-x^2-1)^(1/2)/x/(5^(1/2)+1))+(5^(1/2)-1)*a 
rctan(2*(x^3-x^2-1)^(1/2)/x/(5^(1/2)-1)))*5^(1/2)
 
3.13.91.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 497 vs. \(2 (61) = 122\).

Time = 0.31 (sec) , antiderivative size = 497, normalized size of antiderivative = 5.34 \[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=-\frac {1}{20} \, \sqrt {5} \sqrt {2 \, \sqrt {5} - 6} \log \left (\frac {2 \, x^{6} - 4 \, x^{5} - 4 \, x^{3} + 4 \, x^{2} + {\left (2 \, x^{4} + \sqrt {5} x^{3} + x^{3} - 2 \, x\right )} \sqrt {x^{3} - x^{2} - 1} \sqrt {2 \, \sqrt {5} - 6} + 2 \, \sqrt {5} {\left (x^{5} - x^{4} - x^{2}\right )} + 2}{x^{6} + x^{5} - x^{4} - 2 \, x^{3} - x^{2} + 1}\right ) + \frac {1}{20} \, \sqrt {5} \sqrt {2 \, \sqrt {5} - 6} \log \left (\frac {2 \, x^{6} - 4 \, x^{5} - 4 \, x^{3} + 4 \, x^{2} - {\left (2 \, x^{4} + \sqrt {5} x^{3} + x^{3} - 2 \, x\right )} \sqrt {x^{3} - x^{2} - 1} \sqrt {2 \, \sqrt {5} - 6} + 2 \, \sqrt {5} {\left (x^{5} - x^{4} - x^{2}\right )} + 2}{x^{6} + x^{5} - x^{4} - 2 \, x^{3} - x^{2} + 1}\right ) + \frac {1}{20} \, \sqrt {5} \sqrt {-2 \, \sqrt {5} - 6} \log \left (\frac {2 \, x^{6} - 4 \, x^{5} - 4 \, x^{3} + 4 \, x^{2} + {\left (2 \, x^{4} - \sqrt {5} x^{3} + x^{3} - 2 \, x\right )} \sqrt {x^{3} - x^{2} - 1} \sqrt {-2 \, \sqrt {5} - 6} - 2 \, \sqrt {5} {\left (x^{5} - x^{4} - x^{2}\right )} + 2}{x^{6} + x^{5} - x^{4} - 2 \, x^{3} - x^{2} + 1}\right ) - \frac {1}{20} \, \sqrt {5} \sqrt {-2 \, \sqrt {5} - 6} \log \left (\frac {2 \, x^{6} - 4 \, x^{5} - 4 \, x^{3} + 4 \, x^{2} - {\left (2 \, x^{4} - \sqrt {5} x^{3} + x^{3} - 2 \, x\right )} \sqrt {x^{3} - x^{2} - 1} \sqrt {-2 \, \sqrt {5} - 6} - 2 \, \sqrt {5} {\left (x^{5} - x^{4} - x^{2}\right )} + 2}{x^{6} + x^{5} - x^{4} - 2 \, x^{3} - x^{2} + 1}\right ) \]

input
integrate((x^3+2)*(x^3-x^2-1)^(1/2)/(x^6+x^5-x^4-2*x^3-x^2+1),x, algorithm 
="fricas")
 
output
-1/20*sqrt(5)*sqrt(2*sqrt(5) - 6)*log((2*x^6 - 4*x^5 - 4*x^3 + 4*x^2 + (2* 
x^4 + sqrt(5)*x^3 + x^3 - 2*x)*sqrt(x^3 - x^2 - 1)*sqrt(2*sqrt(5) - 6) + 2 
*sqrt(5)*(x^5 - x^4 - x^2) + 2)/(x^6 + x^5 - x^4 - 2*x^3 - x^2 + 1)) + 1/2 
0*sqrt(5)*sqrt(2*sqrt(5) - 6)*log((2*x^6 - 4*x^5 - 4*x^3 + 4*x^2 - (2*x^4 
+ sqrt(5)*x^3 + x^3 - 2*x)*sqrt(x^3 - x^2 - 1)*sqrt(2*sqrt(5) - 6) + 2*sqr 
t(5)*(x^5 - x^4 - x^2) + 2)/(x^6 + x^5 - x^4 - 2*x^3 - x^2 + 1)) + 1/20*sq 
rt(5)*sqrt(-2*sqrt(5) - 6)*log((2*x^6 - 4*x^5 - 4*x^3 + 4*x^2 + (2*x^4 - s 
qrt(5)*x^3 + x^3 - 2*x)*sqrt(x^3 - x^2 - 1)*sqrt(-2*sqrt(5) - 6) - 2*sqrt( 
5)*(x^5 - x^4 - x^2) + 2)/(x^6 + x^5 - x^4 - 2*x^3 - x^2 + 1)) - 1/20*sqrt 
(5)*sqrt(-2*sqrt(5) - 6)*log((2*x^6 - 4*x^5 - 4*x^3 + 4*x^2 - (2*x^4 - sqr 
t(5)*x^3 + x^3 - 2*x)*sqrt(x^3 - x^2 - 1)*sqrt(-2*sqrt(5) - 6) - 2*sqrt(5) 
*(x^5 - x^4 - x^2) + 2)/(x^6 + x^5 - x^4 - 2*x^3 - x^2 + 1))
 
3.13.91.6 Sympy [F]

\[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=\int \frac {\left (x^{3} + 2\right ) \sqrt {x^{3} - x^{2} - 1}}{x^{6} + x^{5} - x^{4} - 2 x^{3} - x^{2} + 1}\, dx \]

input
integrate((x**3+2)*(x**3-x**2-1)**(1/2)/(x**6+x**5-x**4-2*x**3-x**2+1),x)
 
output
Integral((x**3 + 2)*sqrt(x**3 - x**2 - 1)/(x**6 + x**5 - x**4 - 2*x**3 - x 
**2 + 1), x)
 
3.13.91.7 Maxima [F]

\[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=\int { \frac {\sqrt {x^{3} - x^{2} - 1} {\left (x^{3} + 2\right )}}{x^{6} + x^{5} - x^{4} - 2 \, x^{3} - x^{2} + 1} \,d x } \]

input
integrate((x^3+2)*(x^3-x^2-1)^(1/2)/(x^6+x^5-x^4-2*x^3-x^2+1),x, algorithm 
="maxima")
 
output
integrate(sqrt(x^3 - x^2 - 1)*(x^3 + 2)/(x^6 + x^5 - x^4 - 2*x^3 - x^2 + 1 
), x)
 
3.13.91.8 Giac [F]

\[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=\int { \frac {\sqrt {x^{3} - x^{2} - 1} {\left (x^{3} + 2\right )}}{x^{6} + x^{5} - x^{4} - 2 \, x^{3} - x^{2} + 1} \,d x } \]

input
integrate((x^3+2)*(x^3-x^2-1)^(1/2)/(x^6+x^5-x^4-2*x^3-x^2+1),x, algorithm 
="giac")
 
output
integrate(sqrt(x^3 - x^2 - 1)*(x^3 + 2)/(x^6 + x^5 - x^4 - 2*x^3 - x^2 + 1 
), x)
 
3.13.91.9 Mupad [B] (verification not implemented)

Time = 8.11 (sec) , antiderivative size = 2803, normalized size of antiderivative = 30.14 \[ \int \frac {\left (2+x^3\right ) \sqrt {-1-x^2+x^3}}{1-x^2-2 x^3-x^4+x^5+x^6} \, dx=\text {Too large to display} \]

input
int(-((x^3 + 2)*(x^3 - x^2 - 1)^(1/2))/(x^2 + 2*x^3 + x^4 - x^5 - x^6 - 1) 
,x)
 
output
symsum(-(2*((x - (3^(1/2)*(1/(9*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) 
- ((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3))*1i)/2 + 1/(18*((31^(1/2)*108^( 
1/2))/108 + 29/54)^(1/3)) + ((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)/2 - 1 
/3)/(1/(6*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - (3^(1/2)*(1/(9*((31^ 
(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - ((31^(1/2)*108^(1/2))/108 + 29/54)^ 
(1/3))*1i)/2 + (3*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3))/2))^(1/2)*((1/ 
(9*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - x + ((31^(1/2)*108^(1/2))/1 
08 + 29/54)^(1/3) + 1/3)/(1/(6*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - 
 (3^(1/2)*(1/(9*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - ((31^(1/2)*108 
^(1/2))/108 + 29/54)^(1/3))*1i)/2 + (3*((31^(1/2)*108^(1/2))/108 + 29/54)^ 
(1/3))/2))^(1/2)*ellipticPi((1/(6*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3) 
) - (3^(1/2)*(1/(9*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - ((31^(1/2)* 
108^(1/2))/108 + 29/54)^(1/3))*1i)/2 + (3*((31^(1/2)*108^(1/2))/108 + 29/5 
4)^(1/3))/2)/(root(z^6 + z^5 - z^4 - 2*z^3 - z^2 + 1, z, k) - (3^(1/2)*(1/ 
(9*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - ((31^(1/2)*108^(1/2))/108 + 
 29/54)^(1/3))*1i)/2 + 1/(18*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) + ( 
(31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)/2 - 1/3), asin(((x - (3^(1/2)*(1/( 
9*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) - ((31^(1/2)*108^(1/2))/108 + 
29/54)^(1/3))*1i)/2 + 1/(18*((31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)) + (( 
31^(1/2)*108^(1/2))/108 + 29/54)^(1/3)/2 - 1/3)/(1/(6*((31^(1/2)*108^(1...