3.14.41 \(\int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx\) [1341]

3.14.41.1 Optimal result
3.14.41.2 Mathematica [A] (verified)
3.14.41.3 Rubi [A] (verified)
3.14.41.4 Maple [C] (warning: unable to verify)
3.14.41.5 Fricas [A] (verification not implemented)
3.14.41.6 Sympy [C] (verification not implemented)
3.14.41.7 Maxima [A] (verification not implemented)
3.14.41.8 Giac [A] (verification not implemented)
3.14.41.9 Mupad [B] (verification not implemented)

3.14.41.1 Optimal result

Integrand size = 13, antiderivative size = 97 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=\frac {\left (-3+x^3\right ) \sqrt [3]{-1+x^3}}{18 x^6}-\frac {\arctan \left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{-1+x^3}}{\sqrt {3}}\right )}{9 \sqrt {3}}+\frac {1}{27} \log \left (1+\sqrt [3]{-1+x^3}\right )-\frac {1}{54} \log \left (1-\sqrt [3]{-1+x^3}+\left (-1+x^3\right )^{2/3}\right ) \]

output
1/18*(x^3-3)*(x^3-1)^(1/3)/x^6+1/27*arctan(-1/3*3^(1/2)+2/3*(x^3-1)^(1/3)* 
3^(1/2))*3^(1/2)+1/27*ln(1+(x^3-1)^(1/3))-1/54*ln(1-(x^3-1)^(1/3)+(x^3-1)^ 
(2/3))
 
3.14.41.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=\frac {1}{54} \left (\frac {3 \left (-3+x^3\right ) \sqrt [3]{-1+x^3}}{x^6}-2 \sqrt {3} \arctan \left (\frac {1-2 \sqrt [3]{-1+x^3}}{\sqrt {3}}\right )+2 \log \left (1+\sqrt [3]{-1+x^3}\right )-\log \left (1-\sqrt [3]{-1+x^3}+\left (-1+x^3\right )^{2/3}\right )\right ) \]

input
Integrate[(-1 + x^3)^(1/3)/x^7,x]
 
output
((3*(-3 + x^3)*(-1 + x^3)^(1/3))/x^6 - 2*Sqrt[3]*ArcTan[(1 - 2*(-1 + x^3)^ 
(1/3))/Sqrt[3]] + 2*Log[1 + (-1 + x^3)^(1/3)] - Log[1 - (-1 + x^3)^(1/3) + 
 (-1 + x^3)^(2/3)])/54
 
3.14.41.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {798, 51, 52, 70, 16, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{x^3-1}}{x^7} \, dx\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{3} \int \frac {\sqrt [3]{x^3-1}}{x^9}dx^3\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {1}{3} \left (\frac {1}{6} \int \frac {1}{x^6 \left (x^3-1\right )^{2/3}}dx^3-\frac {\sqrt [3]{x^3-1}}{2 x^6}\right )\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {1}{3} \left (\frac {1}{6} \left (\frac {2}{3} \int \frac {1}{x^3 \left (x^3-1\right )^{2/3}}dx^3+\frac {\sqrt [3]{x^3-1}}{x^3}\right )-\frac {\sqrt [3]{x^3-1}}{2 x^6}\right )\)

\(\Big \downarrow \) 70

\(\displaystyle \frac {1}{3} \left (\frac {1}{6} \left (\frac {2}{3} \left (\frac {3}{2} \int \frac {1}{\sqrt [3]{x^3-1}+1}d\sqrt [3]{x^3-1}+\frac {3}{2} \int \frac {1}{x^6-\sqrt [3]{x^3-1}+1}d\sqrt [3]{x^3-1}-\frac {1}{2} \log \left (x^3\right )\right )+\frac {\sqrt [3]{x^3-1}}{x^3}\right )-\frac {\sqrt [3]{x^3-1}}{2 x^6}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} \left (\frac {1}{6} \left (\frac {2}{3} \left (\frac {3}{2} \int \frac {1}{x^6-\sqrt [3]{x^3-1}+1}d\sqrt [3]{x^3-1}-\frac {1}{2} \log \left (x^3\right )+\frac {3}{2} \log \left (\sqrt [3]{x^3-1}+1\right )\right )+\frac {\sqrt [3]{x^3-1}}{x^3}\right )-\frac {\sqrt [3]{x^3-1}}{2 x^6}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{3} \left (\frac {1}{6} \left (\frac {2}{3} \left (-3 \int \frac {1}{-x^6-3}d\left (2 \sqrt [3]{x^3-1}-1\right )-\frac {1}{2} \log \left (x^3\right )+\frac {3}{2} \log \left (\sqrt [3]{x^3-1}+1\right )\right )+\frac {\sqrt [3]{x^3-1}}{x^3}\right )-\frac {\sqrt [3]{x^3-1}}{2 x^6}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (\frac {1}{6} \left (\frac {2}{3} \left (\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{x^3-1}-1}{\sqrt {3}}\right )-\frac {\log \left (x^3\right )}{2}+\frac {3}{2} \log \left (\sqrt [3]{x^3-1}+1\right )\right )+\frac {\sqrt [3]{x^3-1}}{x^3}\right )-\frac {\sqrt [3]{x^3-1}}{2 x^6}\right )\)

input
Int[(-1 + x^3)^(1/3)/x^7,x]
 
output
(-1/2*(-1 + x^3)^(1/3)/x^6 + ((-1 + x^3)^(1/3)/x^3 + (2*(Sqrt[3]*ArcTan[(- 
1 + 2*(-1 + x^3)^(1/3))/Sqrt[3]] - Log[x^3]/2 + (3*Log[1 + (-1 + x^3)^(1/3 
)])/2))/3)/6)/3
 

3.14.41.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 
3.14.41.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.43 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.84

method result size
meijerg \(-\frac {\operatorname {signum}\left (x^{3}-1\right )^{\frac {1}{3}} \left (\frac {5 \Gamma \left (\frac {2}{3}\right ) x^{3} \operatorname {hypergeom}\left (\left [1, 1, \frac {8}{3}\right ], \left [2, 4\right ], x^{3}\right )}{27}+\frac {\left (\frac {\pi \sqrt {3}}{6}-\frac {3 \ln \left (3\right )}{2}+3 \ln \left (x \right )+i \pi \right ) \Gamma \left (\frac {2}{3}\right )}{3}+\frac {3 \Gamma \left (\frac {2}{3}\right )}{2 x^{6}}-\frac {\Gamma \left (\frac {2}{3}\right )}{x^{3}}\right )}{9 \Gamma \left (\frac {2}{3}\right ) {\left (-\operatorname {signum}\left (x^{3}-1\right )\right )}^{\frac {1}{3}}}\) \(81\)
risch \(\frac {x^{6}-4 x^{3}+3}{18 x^{6} \left (x^{3}-1\right )^{\frac {2}{3}}}+\frac {{\left (-\operatorname {signum}\left (x^{3}-1\right )\right )}^{\frac {2}{3}} \left (\frac {2 \Gamma \left (\frac {2}{3}\right ) x^{3} \operatorname {hypergeom}\left (\left [1, 1, \frac {5}{3}\right ], \left [2, 2\right ], x^{3}\right )}{3}+\left (\frac {\pi \sqrt {3}}{6}-\frac {3 \ln \left (3\right )}{2}+3 \ln \left (x \right )+i \pi \right ) \Gamma \left (\frac {2}{3}\right )\right )}{27 \Gamma \left (\frac {2}{3}\right ) \operatorname {signum}\left (x^{3}-1\right )^{\frac {2}{3}}}\) \(89\)
pseudoelliptic \(\frac {2 \sqrt {3}\, \arctan \left (\frac {\left (2 \left (x^{3}-1\right )^{\frac {1}{3}}-1\right ) \sqrt {3}}{3}\right ) x^{6}+2 \ln \left (1+\left (x^{3}-1\right )^{\frac {1}{3}}\right ) x^{6}-\ln \left (1-\left (x^{3}-1\right )^{\frac {1}{3}}+\left (x^{3}-1\right )^{\frac {2}{3}}\right ) x^{6}+3 x^{3} \left (x^{3}-1\right )^{\frac {1}{3}}-9 \left (x^{3}-1\right )^{\frac {1}{3}}}{54 {\left (1+\left (x^{3}-1\right )^{\frac {1}{3}}\right )}^{2} {\left (1-\left (x^{3}-1\right )^{\frac {1}{3}}+\left (x^{3}-1\right )^{\frac {2}{3}}\right )}^{2}}\) \(120\)
trager \(\frac {\left (x^{3}-3\right ) \left (x^{3}-1\right )^{\frac {1}{3}}}{18 x^{6}}-\frac {\ln \left (-\frac {5890048 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )^{2} x^{3}+630720 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) x^{3}-352128 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {2}{3}}-1477 x^{3}-47120384 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )^{2}+352128 \left (x^{3}-1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )+14247 \left (x^{3}-1\right )^{\frac {2}{3}}-1088384 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )-14247 \left (x^{3}-1\right )^{\frac {1}{3}}+2743}{x^{3}}\right )}{27}-\frac {64 \ln \left (-\frac {5890048 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )^{2} x^{3}+630720 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) x^{3}-352128 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {2}{3}}-1477 x^{3}-47120384 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )^{2}+352128 \left (x^{3}-1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )+14247 \left (x^{3}-1\right )^{\frac {2}{3}}-1088384 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )-14247 \left (x^{3}-1\right )^{\frac {1}{3}}+2743}{x^{3}}\right ) \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )}{27}+\frac {64 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) \ln \left (-\frac {5890048 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )^{2} x^{3}-446656 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) x^{3}+352128 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right ) \left (x^{3}-1\right )^{\frac {2}{3}}-9894 x^{3}-47120384 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )^{2}-352128 \left (x^{3}-1\right )^{\frac {1}{3}} \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )+19749 \left (x^{3}-1\right )^{\frac {2}{3}}-384128 \operatorname {RootOf}\left (4096 \textit {\_Z}^{2}+64 \textit {\_Z} +1\right )-19749 \left (x^{3}-1\right )^{\frac {1}{3}}+8245}{x^{3}}\right )}{27}\) \(446\)

input
int((x^3-1)^(1/3)/x^7,x,method=_RETURNVERBOSE)
 
output
-1/9/GAMMA(2/3)*signum(x^3-1)^(1/3)/(-signum(x^3-1))^(1/3)*(5/27*GAMMA(2/3 
)*x^3*hypergeom([1,1,8/3],[2,4],x^3)+1/3*(1/6*Pi*3^(1/2)-3/2*ln(3)+3*ln(x) 
+I*Pi)*GAMMA(2/3)+3/2*GAMMA(2/3)/x^6-GAMMA(2/3)/x^3)
 
3.14.41.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=\frac {2 \, \sqrt {3} x^{6} \arctan \left (\frac {2}{3} \, \sqrt {3} {\left (x^{3} - 1\right )}^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) - x^{6} \log \left ({\left (x^{3} - 1\right )}^{\frac {2}{3}} - {\left (x^{3} - 1\right )}^{\frac {1}{3}} + 1\right ) + 2 \, x^{6} \log \left ({\left (x^{3} - 1\right )}^{\frac {1}{3}} + 1\right ) + 3 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}} {\left (x^{3} - 3\right )}}{54 \, x^{6}} \]

input
integrate((x^3-1)^(1/3)/x^7,x, algorithm="fricas")
 
output
1/54*(2*sqrt(3)*x^6*arctan(2/3*sqrt(3)*(x^3 - 1)^(1/3) - 1/3*sqrt(3)) - x^ 
6*log((x^3 - 1)^(2/3) - (x^3 - 1)^(1/3) + 1) + 2*x^6*log((x^3 - 1)^(1/3) + 
 1) + 3*(x^3 - 1)^(1/3)*(x^3 - 3))/x^6
 
3.14.41.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.18 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.35 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=- \frac {\Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{3}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {e^{2 i \pi }}{x^{3}}} \right )}}{3 x^{5} \Gamma \left (\frac {8}{3}\right )} \]

input
integrate((x**3-1)**(1/3)/x**7,x)
 
output
-gamma(5/3)*hyper((-1/3, 5/3), (8/3,), exp_polar(2*I*pi)/x**3)/(3*x**5*gam 
ma(8/3))
 
3.14.41.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=\frac {1}{27} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) + \frac {{\left (x^{3} - 1\right )}^{\frac {4}{3}} - 2 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}}}{18 \, {\left (2 \, x^{3} + {\left (x^{3} - 1\right )}^{2} - 1\right )}} - \frac {1}{54} \, \log \left ({\left (x^{3} - 1\right )}^{\frac {2}{3}} - {\left (x^{3} - 1\right )}^{\frac {1}{3}} + 1\right ) + \frac {1}{27} \, \log \left ({\left (x^{3} - 1\right )}^{\frac {1}{3}} + 1\right ) \]

input
integrate((x^3-1)^(1/3)/x^7,x, algorithm="maxima")
 
output
1/27*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^3 - 1)^(1/3) - 1)) + 1/18*((x^3 - 1) 
^(4/3) - 2*(x^3 - 1)^(1/3))/(2*x^3 + (x^3 - 1)^2 - 1) - 1/54*log((x^3 - 1) 
^(2/3) - (x^3 - 1)^(1/3) + 1) + 1/27*log((x^3 - 1)^(1/3) + 1)
 
3.14.41.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.81 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=\frac {1}{27} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) + \frac {{\left (x^{3} - 1\right )}^{\frac {4}{3}} - 2 \, {\left (x^{3} - 1\right )}^{\frac {1}{3}}}{18 \, x^{6}} - \frac {1}{54} \, \log \left ({\left (x^{3} - 1\right )}^{\frac {2}{3}} - {\left (x^{3} - 1\right )}^{\frac {1}{3}} + 1\right ) + \frac {1}{27} \, \log \left ({\left | {\left (x^{3} - 1\right )}^{\frac {1}{3}} + 1 \right |}\right ) \]

input
integrate((x^3-1)^(1/3)/x^7,x, algorithm="giac")
 
output
1/27*sqrt(3)*arctan(1/3*sqrt(3)*(2*(x^3 - 1)^(1/3) - 1)) + 1/18*((x^3 - 1) 
^(4/3) - 2*(x^3 - 1)^(1/3))/x^6 - 1/54*log((x^3 - 1)^(2/3) - (x^3 - 1)^(1/ 
3) + 1) + 1/27*log(abs((x^3 - 1)^(1/3) + 1))
 
3.14.41.9 Mupad [B] (verification not implemented)

Time = 6.41 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.10 \[ \int \frac {\sqrt [3]{-1+x^3}}{x^7} \, dx=\frac {\ln \left (\frac {{\left (x^3-1\right )}^{1/3}}{81}+\frac {1}{81}\right )}{27}-\frac {\frac {{\left (x^3-1\right )}^{1/3}}{9}-\frac {{\left (x^3-1\right )}^{4/3}}{18}}{{\left (x^3-1\right )}^2+2\,x^3-1}-\ln \left (\frac {1}{6}-\frac {{\left (x^3-1\right )}^{1/3}}{3}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )\,\left (\frac {1}{54}+\frac {\sqrt {3}\,1{}\mathrm {i}}{54}\right )+\ln \left (\frac {{\left (x^3-1\right )}^{1/3}}{3}-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )\,\left (-\frac {1}{54}+\frac {\sqrt {3}\,1{}\mathrm {i}}{54}\right ) \]

input
int((x^3 - 1)^(1/3)/x^7,x)
 
output
log((x^3 - 1)^(1/3)/81 + 1/81)/27 - ((x^3 - 1)^(1/3)/9 - (x^3 - 1)^(4/3)/1 
8)/((x^3 - 1)^2 + 2*x^3 - 1) - log((3^(1/2)*1i)/6 - (x^3 - 1)^(1/3)/3 + 1/ 
6)*((3^(1/2)*1i)/54 + 1/54) + log((3^(1/2)*1i)/6 + (x^3 - 1)^(1/3)/3 - 1/6 
)*((3^(1/2)*1i)/54 - 1/54)