3.14.46 \(\int \frac {-1+x^2}{(1+x^2) \sqrt {-x-x^2+x^3}} \, dx\) [1346]

3.14.46.1 Optimal result
3.14.46.2 Mathematica [A] (verified)
3.14.46.3 Rubi [A] (verified)
3.14.46.4 Maple [B] (verified)
3.14.46.5 Fricas [B] (verification not implemented)
3.14.46.6 Sympy [F]
3.14.46.7 Maxima [F]
3.14.46.8 Giac [F]
3.14.46.9 Mupad [B] (verification not implemented)

3.14.46.1 Optimal result

Integrand size = 29, antiderivative size = 97 \[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=-\sqrt {\frac {1}{5}+\frac {2 i}{5}} \arctan \left (\frac {\sqrt {1-2 i} \sqrt {-x-x^2+x^3}}{-1-x+x^2}\right )-\sqrt {\frac {1}{5}-\frac {2 i}{5}} \arctan \left (\frac {\sqrt {1+2 i} \sqrt {-x-x^2+x^3}}{-1-x+x^2}\right ) \]

output
-1/5*(5+10*I)^(1/2)*arctan((1-2*I)^(1/2)*(x^3-x^2-x)^(1/2)/(x^2-x-1))-1/5* 
(5-10*I)^(1/2)*arctan((1+2*I)^(1/2)*(x^3-x^2-x)^(1/2)/(x^2-x-1))
 
3.14.46.2 Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.10 \[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=-\frac {\sqrt {x} \sqrt {-1-x+x^2} \left (\sqrt {1+2 i} \arctan \left (\frac {\sqrt {1-2 i} \sqrt {x}}{\sqrt {-1-x+x^2}}\right )+\sqrt {1-2 i} \arctan \left (\frac {\sqrt {1+2 i} \sqrt {x}}{\sqrt {-1-x+x^2}}\right )\right )}{\sqrt {5} \sqrt {x \left (-1-x+x^2\right )}} \]

input
Integrate[(-1 + x^2)/((1 + x^2)*Sqrt[-x - x^2 + x^3]),x]
 
output
-((Sqrt[x]*Sqrt[-1 - x + x^2]*(Sqrt[1 + 2*I]*ArcTan[(Sqrt[1 - 2*I]*Sqrt[x] 
)/Sqrt[-1 - x + x^2]] + Sqrt[1 - 2*I]*ArcTan[(Sqrt[1 + 2*I]*Sqrt[x])/Sqrt[ 
-1 - x + x^2]]))/(Sqrt[5]*Sqrt[x*(-1 - x + x^2)]))
 
3.14.46.3 Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.13, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2-1}{\left (x^2+1\right ) \sqrt {x^3-x^2-x}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^2-x-1} \int -\frac {1-x^2}{\sqrt {x} \left (x^2+1\right ) \sqrt {x^2-x-1}}dx}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^2-x-1} \int \frac {1-x^2}{\sqrt {x} \left (x^2+1\right ) \sqrt {x^2-x-1}}dx}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-x-1} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^2-x-1}}d\sqrt {x}}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-x-1} \int \left (\frac {2}{\left (x^2+1\right ) \sqrt {x^2-x-1}}-\frac {1}{\sqrt {x^2-x-1}}\right )d\sqrt {x}}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-x-1} \left (\frac {\arctan \left (\frac {\sqrt {1-2 i} \sqrt {x}}{\sqrt {x^2-x-1}}\right )}{2 \sqrt {1-2 i}}+\frac {\arctan \left (\frac {\sqrt {1+2 i} \sqrt {x}}{\sqrt {x^2-x-1}}\right )}{2 \sqrt {1+2 i}}\right )}{\sqrt {x^3-x^2-x}}\)

input
Int[(-1 + x^2)/((1 + x^2)*Sqrt[-x - x^2 + x^3]),x]
 
output
(-2*Sqrt[x]*Sqrt[-1 - x + x^2]*(ArcTan[(Sqrt[1 - 2*I]*Sqrt[x])/Sqrt[-1 - x 
 + x^2]]/(2*Sqrt[1 - 2*I]) + ArcTan[(Sqrt[1 + 2*I]*Sqrt[x])/Sqrt[-1 - x + 
x^2]]/(2*Sqrt[1 + 2*I])))/Sqrt[-x - x^2 + x^3]
 

3.14.46.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.14.46.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(191\) vs. \(2(77)=154\).

Time = 18.80 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.98

method result size
default \(-\frac {-\sqrt {5}\, \ln \left (\frac {-\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\sqrt {5}\, \ln \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\left (5+\sqrt {5}\right ) \left (\arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x -2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )-\arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x +2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )\right )}{5 \sqrt {2+2 \sqrt {5}}}\) \(192\)
pseudoelliptic \(-\frac {-\sqrt {5}\, \ln \left (\frac {-\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\sqrt {5}\, \ln \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\left (5+\sqrt {5}\right ) \left (\arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x -2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )-\arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x +2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )\right )}{5 \sqrt {2+2 \sqrt {5}}}\) \(192\)
trager \(\frac {\operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {325 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{5} x^{2}-325 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{5}+90 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{3} x^{2}+520 x \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{3}+80 \sqrt {x^{3}-x^{2}-x}\, \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}-90 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{3}-31 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right ) x^{2}+248 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right ) x +192 \sqrt {x^{3}-x^{2}-x}+31 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )}{{\left (5 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2} x -5 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}-x -3\right )}^{2}}\right )}{2}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) \ln \left (\frac {65 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{4} x^{2}-65 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{4}+34 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) x^{2}-104 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) x +80 \sqrt {x^{3}-x^{2}-x}\, \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}-34 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right )-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) x^{2}+8 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right ) x -160 \sqrt {x^{3}-x^{2}-x}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+10\right )}{{\left (5 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2} x -5 \operatorname {RootOf}\left (5 \textit {\_Z}^{4}+2 \textit {\_Z}^{2}+1\right )^{2}+3 x +1\right )}^{2}}\right )}{10}\) \(654\)
elliptic \(\text {Expression too large to display}\) \(873\)

input
int((x^2-1)/(x^2+1)/(x^3-x^2-x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/5/(2+2*5^(1/2))^(1/2)*(-5^(1/2)*ln((-(x*(x^2-x-1))^(1/2)*(-2+2*5^(1/2)) 
^(1/2)+x*5^(1/2)+x^2-x-1)/x)+5^(1/2)*ln(((x*(x^2-x-1))^(1/2)*(-2+2*5^(1/2) 
)^(1/2)+x*5^(1/2)+x^2-x-1)/x)+(5+5^(1/2))*(arctan(((-2+2*5^(1/2))^(1/2)*x- 
2*(x*(x^2-x-1))^(1/2))/x/(2+2*5^(1/2))^(1/2))-arctan(((-2+2*5^(1/2))^(1/2) 
*x+2*(x*(x^2-x-1))^(1/2))/x/(2+2*5^(1/2))^(1/2))))
 
3.14.46.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (69) = 138\).

Time = 0.30 (sec) , antiderivative size = 293, normalized size of antiderivative = 3.02 \[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=\frac {1}{40} \, \sqrt {5} \sqrt {-8 i - 4} \log \left (\frac {5 \, x^{4} + \left (20 i - 10\right ) \, x^{3} + \sqrt {5} \sqrt {-8 i - 4} \sqrt {x^{3} - x^{2} - x} {\left (-\left (2 i - 1\right ) \, x^{2} + \left (2 i + 4\right ) \, x + 2 i - 1\right )} - \left (20 i + 30\right ) \, x^{2} - \left (20 i - 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) - \frac {1}{40} \, \sqrt {5} \sqrt {-8 i - 4} \log \left (\frac {5 \, x^{4} + \left (20 i - 10\right ) \, x^{3} + \sqrt {5} \sqrt {-8 i - 4} \sqrt {x^{3} - x^{2} - x} {\left (\left (2 i - 1\right ) \, x^{2} - \left (2 i + 4\right ) \, x - 2 i + 1\right )} - \left (20 i + 30\right ) \, x^{2} - \left (20 i - 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{40} \, \sqrt {5} \sqrt {8 i - 4} \log \left (\frac {5 \, x^{4} - \left (20 i + 10\right ) \, x^{3} + \sqrt {5} \sqrt {8 i - 4} \sqrt {x^{3} - x^{2} - x} {\left (\left (2 i + 1\right ) \, x^{2} - \left (2 i - 4\right ) \, x - 2 i - 1\right )} + \left (20 i - 30\right ) \, x^{2} + \left (20 i + 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) - \frac {1}{40} \, \sqrt {5} \sqrt {8 i - 4} \log \left (\frac {5 \, x^{4} - \left (20 i + 10\right ) \, x^{3} + \sqrt {5} \sqrt {8 i - 4} \sqrt {x^{3} - x^{2} - x} {\left (-\left (2 i + 1\right ) \, x^{2} + \left (2 i - 4\right ) \, x + 2 i + 1\right )} + \left (20 i - 30\right ) \, x^{2} + \left (20 i + 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) \]

input
integrate((x^2-1)/(x^2+1)/(x^3-x^2-x)^(1/2),x, algorithm="fricas")
 
output
1/40*sqrt(5)*sqrt(-8*I - 4)*log((5*x^4 + (20*I - 10)*x^3 + sqrt(5)*sqrt(-8 
*I - 4)*sqrt(x^3 - x^2 - x)*(-(2*I - 1)*x^2 + (2*I + 4)*x + 2*I - 1) - (20 
*I + 30)*x^2 - (20*I - 10)*x + 5)/(x^4 + 2*x^2 + 1)) - 1/40*sqrt(5)*sqrt(- 
8*I - 4)*log((5*x^4 + (20*I - 10)*x^3 + sqrt(5)*sqrt(-8*I - 4)*sqrt(x^3 - 
x^2 - x)*((2*I - 1)*x^2 - (2*I + 4)*x - 2*I + 1) - (20*I + 30)*x^2 - (20*I 
 - 10)*x + 5)/(x^4 + 2*x^2 + 1)) + 1/40*sqrt(5)*sqrt(8*I - 4)*log((5*x^4 - 
 (20*I + 10)*x^3 + sqrt(5)*sqrt(8*I - 4)*sqrt(x^3 - x^2 - x)*((2*I + 1)*x^ 
2 - (2*I - 4)*x - 2*I - 1) + (20*I - 30)*x^2 + (20*I + 10)*x + 5)/(x^4 + 2 
*x^2 + 1)) - 1/40*sqrt(5)*sqrt(8*I - 4)*log((5*x^4 - (20*I + 10)*x^3 + sqr 
t(5)*sqrt(8*I - 4)*sqrt(x^3 - x^2 - x)*(-(2*I + 1)*x^2 + (2*I - 4)*x + 2*I 
 + 1) + (20*I - 30)*x^2 + (20*I + 10)*x + 5)/(x^4 + 2*x^2 + 1))
 
3.14.46.6 Sympy [F]

\[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=\int \frac {\left (x - 1\right ) \left (x + 1\right )}{\sqrt {x \left (x^{2} - x - 1\right )} \left (x^{2} + 1\right )}\, dx \]

input
integrate((x**2-1)/(x**2+1)/(x**3-x**2-x)**(1/2),x)
 
output
Integral((x - 1)*(x + 1)/(sqrt(x*(x**2 - x - 1))*(x**2 + 1)), x)
 
3.14.46.7 Maxima [F]

\[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=\int { \frac {x^{2} - 1}{\sqrt {x^{3} - x^{2} - x} {\left (x^{2} + 1\right )}} \,d x } \]

input
integrate((x^2-1)/(x^2+1)/(x^3-x^2-x)^(1/2),x, algorithm="maxima")
 
output
integrate((x^2 - 1)/(sqrt(x^3 - x^2 - x)*(x^2 + 1)), x)
 
3.14.46.8 Giac [F]

\[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=\int { \frac {x^{2} - 1}{\sqrt {x^{3} - x^{2} - x} {\left (x^{2} + 1\right )}} \,d x } \]

input
integrate((x^2-1)/(x^2+1)/(x^3-x^2-x)^(1/2),x, algorithm="giac")
 
output
integrate((x^2 - 1)/(sqrt(x^3 - x^2 - x)*(x^2 + 1)), x)
 
3.14.46.9 Mupad [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 210, normalized size of antiderivative = 2.16 \[ \int \frac {-1+x^2}{\left (1+x^2\right ) \sqrt {-x-x^2+x^3}} \, dx=-\frac {\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\left (\sqrt {5}+1\right )\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\left (-\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )+\Pi \left (-\frac {\sqrt {5}\,1{}\mathrm {i}}{2}-\frac {1}{2}{}\mathrm {i};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )+\Pi \left (\frac {\sqrt {5}\,1{}\mathrm {i}}{2}+\frac {1}{2}{}\mathrm {i};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}} \]

input
int((x^2 - 1)/((x^2 + 1)*(x^3 - x^2 - x)^(1/2)),x)
 
output
-((x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 - 1/2))^(1 
/2)*(5^(1/2) + 1)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*(ellipti 
cPi(- (5^(1/2)*1i)/2 - 1i/2, asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/ 
2 + 1/2)/(5^(1/2)/2 - 1/2)) - ellipticF(asin((x/(5^(1/2)/2 + 1/2))^(1/2)), 
 -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)) + ellipticPi((5^(1/2)*1i)/2 + 1i/2, 
 asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2))) 
)/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2)