3.14.61 \(\int \frac {(-2 b+a x^2) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx\) [1361]

3.14.61.1 Optimal result
3.14.61.2 Mathematica [A] (verified)
3.14.61.3 Rubi [A] (verified)
3.14.61.4 Maple [A] (verified)
3.14.61.5 Fricas [F(-1)]
3.14.61.6 Sympy [F]
3.14.61.7 Maxima [F]
3.14.61.8 Giac [B] (verification not implemented)
3.14.61.9 Mupad [B] (verification not implemented)

3.14.61.1 Optimal result

Integrand size = 28, antiderivative size = 98 \[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\frac {\left (8 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{2 x}+\frac {7}{4} \sqrt [4]{a} b \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )-\frac {7}{4} \sqrt [4]{a} b \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right ) \]

output
1/2*(a*x^2+8*b)*(a*x^4+b*x^2)^(1/4)/x+7/4*a^(1/4)*b*arctan(a^(1/4)*x/(a*x^ 
4+b*x^2)^(1/4))-7/4*a^(1/4)*b*arctanh(a^(1/4)*x/(a*x^4+b*x^2)^(1/4))
 
3.14.61.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.29 \[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\frac {x \left (b+a x^2\right )^{3/4} \left (2 \sqrt [4]{b+a x^2} \left (8 b+a x^2\right )+7 \sqrt [4]{a} b \sqrt {x} \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )-7 \sqrt [4]{a} b \sqrt {x} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )\right )}{4 \left (x^2 \left (b+a x^2\right )\right )^{3/4}} \]

input
Integrate[((-2*b + a*x^2)*(b*x^2 + a*x^4)^(1/4))/x^2,x]
 
output
(x*(b + a*x^2)^(3/4)*(2*(b + a*x^2)^(1/4)*(8*b + a*x^2) + 7*a^(1/4)*b*Sqrt 
[x]*ArcTan[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)] - 7*a^(1/4)*b*Sqrt[x]*ArcT 
anh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)]))/(4*(x^2*(b + a*x^2))^(3/4))
 
3.14.61.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.49, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1944, 1402, 248, 266, 854, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a x^2-2 b\right ) \sqrt [4]{a x^4+b x^2}}{x^2} \, dx\)

\(\Big \downarrow \) 1944

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-7 a \int \sqrt [4]{a x^4+b x^2}dx\)

\(\Big \downarrow \) 1402

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \int \sqrt {x} \sqrt [4]{a x^2+b}dx}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 248

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \left (\frac {1}{4} b \int \frac {\sqrt {x}}{\left (a x^2+b\right )^{3/4}}dx+\frac {1}{2} x^{3/2} \sqrt [4]{a x^2+b}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \left (\frac {1}{2} b \int \frac {x}{\left (a x^2+b\right )^{3/4}}d\sqrt {x}+\frac {1}{2} x^{3/2} \sqrt [4]{a x^2+b}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 854

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \left (\frac {1}{2} b \int \frac {x}{1-a x^2}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}+\frac {1}{2} x^{3/2} \sqrt [4]{a x^2+b}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \left (\frac {1}{2} b \left (\frac {\int \frac {1}{1-\sqrt {a} x}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}}{2 \sqrt {a}}-\frac {\int \frac {1}{\sqrt {a} x+1}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}}{2 \sqrt {a}}\right )+\frac {1}{2} x^{3/2} \sqrt [4]{a x^2+b}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \left (\frac {1}{2} b \left (\frac {\int \frac {1}{1-\sqrt {a} x}d\frac {\sqrt {x}}{\sqrt [4]{a x^2+b}}}{2 \sqrt {a}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{2 a^{3/4}}\right )+\frac {1}{2} x^{3/2} \sqrt [4]{a x^2+b}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {4 \left (a x^4+b x^2\right )^{5/4}}{x^3}-\frac {7 a \sqrt [4]{a x^4+b x^2} \left (\frac {1}{2} b \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{2 a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{2 a^{3/4}}\right )+\frac {1}{2} x^{3/2} \sqrt [4]{a x^2+b}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

input
Int[((-2*b + a*x^2)*(b*x^2 + a*x^4)^(1/4))/x^2,x]
 
output
(4*(b*x^2 + a*x^4)^(5/4))/x^3 - (7*a*(b*x^2 + a*x^4)^(1/4)*((x^(3/2)*(b + 
a*x^2)^(1/4))/2 + (b*(-1/2*ArcTan[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)]/a^( 
3/4) + ArcTanh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)]/(2*a^(3/4))))/2))/(Sqr 
t[x]*(b + a*x^2)^(1/4))
 

3.14.61.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 248
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 2*p + 1))), x] + Simp[2*a*(p/(m + 2*p + 1)) 
  Int[(c*x)^m*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] && GtQ[ 
p, 0] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1402
Int[((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(b*x^2 + c*x^4)^p 
/(x^(2*p)*(b + c*x^2)^p)   Int[x^(2*p)*(b + c*x^2)^p, x], x] /; FreeQ[{b, c 
, p}, x] &&  !IntegerQ[p]
 

rule 1944
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.)), x_Symbol] :> Simp[c*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j 
+ b*x^(j + n))^(p + 1)/(a*(m + j*p + 1))), x] + Simp[(a*d*(m + j*p + 1) - b 
*c*(m + n + p*(j + n) + 1))/(a*e^n*(m + j*p + 1))   Int[(e*x)^(m + n)*(a*x^ 
j + b*x^(j + n))^p, x], x] /; FreeQ[{a, b, c, d, e, j, p}, x] && EqQ[jn, j 
+ n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && (LtQ[m + j*p, -1 
] || (IntegersQ[m - 1/2, p - 1/2] && LtQ[p, 0] && LtQ[m, (-n)*p - 1])) && ( 
GtQ[e, 0] || IntegersQ[j, n]) && NeQ[m + j*p + 1, 0] && NeQ[m - n + j*p + 1 
, 0]
 
3.14.61.4 Maple [A] (verified)

Time = 2.11 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.11

method result size
pseudoelliptic \(\frac {-7 b x \left (\ln \left (\frac {-a^{\frac {1}{4}} x -\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x -\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )\right ) a^{\frac {1}{4}}+4 \left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}} \left (a \,x^{2}+8 b \right )}{8 x}\) \(109\)

input
int((a*x^2-2*b)*(a*x^4+b*x^2)^(1/4)/x^2,x,method=_RETURNVERBOSE)
 
output
1/8*(-7*b*x*(ln((-a^(1/4)*x-(x^2*(a*x^2+b))^(1/4))/(a^(1/4)*x-(x^2*(a*x^2+ 
b))^(1/4)))+2*arctan(1/a^(1/4)/x*(x^2*(a*x^2+b))^(1/4)))*a^(1/4)+4*(x^2*(a 
*x^2+b))^(1/4)*(a*x^2+8*b))/x
 
3.14.61.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\text {Timed out} \]

input
integrate((a*x^2-2*b)*(a*x^4+b*x^2)^(1/4)/x^2,x, algorithm="fricas")
 
output
Timed out
 
3.14.61.6 Sympy [F]

\[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\int \frac {\sqrt [4]{x^{2} \left (a x^{2} + b\right )} \left (a x^{2} - 2 b\right )}{x^{2}}\, dx \]

input
integrate((a*x**2-2*b)*(a*x**4+b*x**2)**(1/4)/x**2,x)
 
output
Integral((x**2*(a*x**2 + b))**(1/4)*(a*x**2 - 2*b)/x**2, x)
 
3.14.61.7 Maxima [F]

\[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\int { \frac {{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{2} - 2 \, b\right )}}{x^{2}} \,d x } \]

input
integrate((a*x^2-2*b)*(a*x^4+b*x^2)^(1/4)/x^2,x, algorithm="maxima")
 
output
integrate((a*x^4 + b*x^2)^(1/4)*(a*x^2 - 2*b)/x^2, x)
 
3.14.61.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 221 vs. \(2 (78) = 156\).

Time = 0.29 (sec) , antiderivative size = 221, normalized size of antiderivative = 2.26 \[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\frac {8 \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}} a b x^{2} - 14 \, \sqrt {2} \left (-a\right )^{\frac {1}{4}} b^{2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} + 2 \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right ) - 14 \, \sqrt {2} \left (-a\right )^{\frac {1}{4}} b^{2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} - 2 \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right ) - 7 \, \sqrt {2} \left (-a\right )^{\frac {1}{4}} b^{2} \log \left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{2}}}\right ) + 7 \, \sqrt {2} \left (-a\right )^{\frac {1}{4}} b^{2} \log \left (-\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{2}}}\right ) + 64 \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {1}{4}} b^{2}}{16 \, b} \]

input
integrate((a*x^2-2*b)*(a*x^4+b*x^2)^(1/4)/x^2,x, algorithm="giac")
 
output
1/16*(8*(a + b/x^2)^(1/4)*a*b*x^2 - 14*sqrt(2)*(-a)^(1/4)*b^2*arctan(1/2*s 
qrt(2)*(sqrt(2)*(-a)^(1/4) + 2*(a + b/x^2)^(1/4))/(-a)^(1/4)) - 14*sqrt(2) 
*(-a)^(1/4)*b^2*arctan(-1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) - 2*(a + b/x^2)^(1 
/4))/(-a)^(1/4)) - 7*sqrt(2)*(-a)^(1/4)*b^2*log(sqrt(2)*(-a)^(1/4)*(a + b/ 
x^2)^(1/4) + sqrt(-a) + sqrt(a + b/x^2)) + 7*sqrt(2)*(-a)^(1/4)*b^2*log(-s 
qrt(2)*(-a)^(1/4)*(a + b/x^2)^(1/4) + sqrt(-a) + sqrt(a + b/x^2)) + 64*(a 
+ b/x^2)^(1/4)*b^2)/b
 
3.14.61.9 Mupad [B] (verification not implemented)

Time = 6.82 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.91 \[ \int \frac {\left (-2 b+a x^2\right ) \sqrt [4]{b x^2+a x^4}}{x^2} \, dx=\frac {2\,a\,x\,{\left (a\,x^4+b\,x^2\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {3}{4};\ \frac {7}{4};\ -\frac {a\,x^2}{b}\right )}{3\,{\left (\frac {a\,x^2}{b}+1\right )}^{1/4}}+\frac {4\,b\,{\left (a\,x^4+b\,x^2\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},-\frac {1}{4};\ \frac {3}{4};\ -\frac {a\,x^2}{b}\right )}{x\,{\left (\frac {a\,x^2}{b}+1\right )}^{1/4}} \]

input
int(-((a*x^4 + b*x^2)^(1/4)*(2*b - a*x^2))/x^2,x)
 
output
(2*a*x*(a*x^4 + b*x^2)^(1/4)*hypergeom([-1/4, 3/4], 7/4, -(a*x^2)/b))/(3*( 
(a*x^2)/b + 1)^(1/4)) + (4*b*(a*x^4 + b*x^2)^(1/4)*hypergeom([-1/4, -1/4], 
 3/4, -(a*x^2)/b))/(x*((a*x^2)/b + 1)^(1/4))