3.14.87 \(\int \frac {1+k x^2}{(-1+c k x+k x^2) \sqrt {(1-x^2) (1-k^2 x^2)}} \, dx\) [1387]

3.14.87.1 Optimal result
3.14.87.2 Mathematica [C] (warning: unable to verify)
3.14.87.3 Rubi [C] (warning: unable to verify)
3.14.87.4 Maple [A] (verified)
3.14.87.5 Fricas [A] (verification not implemented)
3.14.87.6 Sympy [F]
3.14.87.7 Maxima [F]
3.14.87.8 Giac [F]
3.14.87.9 Mupad [F(-1)]

3.14.87.1 Optimal result

Integrand size = 43, antiderivative size = 100 \[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\frac {2 \sqrt {1-2 k+k^2-c^2 k^2} \arctan \left (\frac {\sqrt {1-2 k+k^2-c^2 k^2} x}{-1+c k x+k x^2+\sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{(1-k+c k) (-1+k+c k)} \]

output
2*(-c^2*k^2+k^2-2*k+1)^(1/2)*arctan((-c^2*k^2+k^2-2*k+1)^(1/2)*x/(-1+c*k*x 
+k*x^2+(1+(-k^2-1)*x^2+k^2*x^4)^(1/2)))/(c*k-k+1)/(c*k+k-1)
 
3.14.87.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 16.38 (sec) , antiderivative size = 1373, normalized size of antiderivative = 13.73 \[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\frac {\frac {\sqrt {-1+x^2} \sqrt {-1+k^2 x^2} \left (\frac {\left (4+\left (-4+c^2\right ) k-c^2 k^2+c \sqrt {k} \sqrt {4+c^2 k}+c k^{3/2} \sqrt {4+c^2 k}\right ) \text {arctanh}\left (\frac {\sqrt {-2+4 k+2 \left (-1+c^2\right ) k^2} \sqrt {-1+k^2 x^2}}{\sqrt {k} \sqrt {2+\left (-4+c^2\right ) k+2 k^2+c^2 k^3+c \sqrt {k} \sqrt {4+c^2 k}-c k^{5/2} \sqrt {4+c^2 k}} \sqrt {-1+x^2}}\right )}{\sqrt {2+\left (-4+c^2\right ) k+2 k^2+c^2 k^3+c \sqrt {k} \sqrt {4+c^2 k}-c k^{5/2} \sqrt {4+c^2 k}}}+\frac {\left (-4-\left (-4+c^2\right ) k+c^2 k^2+c \sqrt {k} \sqrt {4+c^2 k}+c k^{3/2} \sqrt {4+c^2 k}\right ) \text {arctanh}\left (\frac {\sqrt {-2+4 k+2 \left (-1+c^2\right ) k^2} \sqrt {-1+k^2 x^2}}{\sqrt {k} \sqrt {2+\left (-4+c^2\right ) k+2 k^2+c^2 k^3-c \sqrt {k} \sqrt {4+c^2 k}+c k^{5/2} \sqrt {4+c^2 k}} \sqrt {-1+x^2}}\right )}{\sqrt {2+\left (-4+c^2\right ) k+2 k^2+c^2 k^3-c \sqrt {k} \sqrt {4+c^2 k}+c k^{5/2} \sqrt {4+c^2 k}}}\right )}{\sqrt {2+\frac {c^2 k}{2}} \sqrt {-1+2 k+\left (-1+c^2\right ) k^2}}+2 \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticF}\left (\arcsin (x),k^2\right )-\frac {4 \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}}-\frac {2 c^2 k \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}}+\frac {8 c \sqrt {k} \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{\sqrt {4+c^2 k} \left (2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}\right )}+\frac {2 c^3 k^{3/2} \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{\sqrt {4+c^2 k} \left (2+c^2 k-c \sqrt {k} \sqrt {4+c^2 k}\right )}-\frac {4 \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}}-\frac {2 c^2 k \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}}-\frac {8 c \sqrt {k} \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{\sqrt {4+c^2 k} \left (2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}\right )}-\frac {2 c^3 k^{3/2} \sqrt {1-x^2} \sqrt {1-k^2 x^2} \operatorname {EllipticPi}\left (\frac {2 k}{2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}},\arcsin (x),k^2\right )}{\sqrt {4+c^2 k} \left (2+c^2 k+c \sqrt {k} \sqrt {4+c^2 k}\right )}}{2 \sqrt {\left (-1+x^2\right ) \left (-1+k^2 x^2\right )}} \]

input
Integrate[(1 + k*x^2)/((-1 + c*k*x + k*x^2)*Sqrt[(1 - x^2)*(1 - k^2*x^2)]) 
,x]
 
output
((Sqrt[-1 + x^2]*Sqrt[-1 + k^2*x^2]*(((4 + (-4 + c^2)*k - c^2*k^2 + c*Sqrt 
[k]*Sqrt[4 + c^2*k] + c*k^(3/2)*Sqrt[4 + c^2*k])*ArcTanh[(Sqrt[-2 + 4*k + 
2*(-1 + c^2)*k^2]*Sqrt[-1 + k^2*x^2])/(Sqrt[k]*Sqrt[2 + (-4 + c^2)*k + 2*k 
^2 + c^2*k^3 + c*Sqrt[k]*Sqrt[4 + c^2*k] - c*k^(5/2)*Sqrt[4 + c^2*k]]*Sqrt 
[-1 + x^2])])/Sqrt[2 + (-4 + c^2)*k + 2*k^2 + c^2*k^3 + c*Sqrt[k]*Sqrt[4 + 
 c^2*k] - c*k^(5/2)*Sqrt[4 + c^2*k]] + ((-4 - (-4 + c^2)*k + c^2*k^2 + c*S 
qrt[k]*Sqrt[4 + c^2*k] + c*k^(3/2)*Sqrt[4 + c^2*k])*ArcTanh[(Sqrt[-2 + 4*k 
 + 2*(-1 + c^2)*k^2]*Sqrt[-1 + k^2*x^2])/(Sqrt[k]*Sqrt[2 + (-4 + c^2)*k + 
2*k^2 + c^2*k^3 - c*Sqrt[k]*Sqrt[4 + c^2*k] + c*k^(5/2)*Sqrt[4 + c^2*k]]*S 
qrt[-1 + x^2])])/Sqrt[2 + (-4 + c^2)*k + 2*k^2 + c^2*k^3 - c*Sqrt[k]*Sqrt[ 
4 + c^2*k] + c*k^(5/2)*Sqrt[4 + c^2*k]]))/(Sqrt[2 + (c^2*k)/2]*Sqrt[-1 + 2 
*k + (-1 + c^2)*k^2]) + 2*Sqrt[1 - x^2]*Sqrt[1 - k^2*x^2]*EllipticF[ArcSin 
[x], k^2] - (4*Sqrt[1 - x^2]*Sqrt[1 - k^2*x^2]*EllipticPi[(2*k)/(2 + c^2*k 
 - c*Sqrt[k]*Sqrt[4 + c^2*k]), ArcSin[x], k^2])/(2 + c^2*k - c*Sqrt[k]*Sqr 
t[4 + c^2*k]) - (2*c^2*k*Sqrt[1 - x^2]*Sqrt[1 - k^2*x^2]*EllipticPi[(2*k)/ 
(2 + c^2*k - c*Sqrt[k]*Sqrt[4 + c^2*k]), ArcSin[x], k^2])/(2 + c^2*k - c*S 
qrt[k]*Sqrt[4 + c^2*k]) + (8*c*Sqrt[k]*Sqrt[1 - x^2]*Sqrt[1 - k^2*x^2]*Ell 
ipticPi[(2*k)/(2 + c^2*k - c*Sqrt[k]*Sqrt[4 + c^2*k]), ArcSin[x], k^2])/(S 
qrt[4 + c^2*k]*(2 + c^2*k - c*Sqrt[k]*Sqrt[4 + c^2*k])) + (2*c^3*k^(3/2)*S 
qrt[1 - x^2]*Sqrt[1 - k^2*x^2]*EllipticPi[(2*k)/(2 + c^2*k - c*Sqrt[k]*...
 
3.14.87.3 Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 4.37 (sec) , antiderivative size = 1288, normalized size of antiderivative = 12.88, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {2048, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {k x^2+1}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )} \left (c k x+k x^2-1\right )} \, dx\)

\(\Big \downarrow \) 2048

\(\displaystyle \int \frac {k x^2+1}{\sqrt {k^2 x^4+\left (-k^2-1\right ) x^2+1} \left (c k x+k x^2-1\right )}dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {2-c k x}{\sqrt {k^2 x^4+\left (-k^2-1\right ) x^2+1} \left (c k x+k x^2-1\right )}+\frac {1}{\sqrt {k^2 x^4+\left (-k^2-1\right ) x^2+1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (k x^2+1\right ) \sqrt {\frac {k^2 x^4-\left (k^2+1\right ) x^2+1}{\left (k x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {k} x\right ),\frac {(k+1)^2}{4 k}\right ) \left (c \sqrt {k}-\sqrt {k c^2+4}\right )^2}{4 \sqrt {k} \left (k c^2-\sqrt {k} \sqrt {k c^2+4} c+4\right ) \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}+\frac {c \left (k x^2+1\right ) \sqrt {\frac {k^2 x^4-\left (k^2+1\right ) x^2+1}{\left (k x^2+1\right )^2}} \operatorname {EllipticPi}\left (\frac {1}{4} \left (k c^2+4\right ),2 \arctan \left (\sqrt {k} x\right ),\frac {(k+1)^2}{4 k}\right ) \left (c \sqrt {k}-\sqrt {k c^2+4}\right )^2}{8 \left (k^{3/2} c^3-k \sqrt {k c^2+4} c^2+4 \sqrt {k} c-2 \sqrt {k c^2+4}\right ) \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}-\frac {\arctan \left (\frac {-2 \left (2 \left (k^2+1\right )-\left (c k-\sqrt {k} \sqrt {k c^2+4}\right )^2\right ) x^2 k^2+8 k^2-\left (k^2+1\right ) \left (c k-\sqrt {k} \sqrt {k c^2+4}\right )^2}{4 \sqrt {2} k^{3/2} \sqrt {\left (1-c^2\right ) k^2-2 k+1} \sqrt {k c^2-\sqrt {k} \sqrt {k c^2+4} c+2} \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}\right ) \left (c \sqrt {k}-\sqrt {k c^2+4}\right )}{2 \sqrt {2} \sqrt {\left (1-c^2\right ) k^2-2 k+1} \sqrt {k c^2-\sqrt {k} \sqrt {k c^2+4} c+2}}-\frac {\arctan \left (\frac {\sqrt {\left (1-c^2\right ) k^2-2 k+1} x}{\sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}\right )}{\sqrt {\left (1-c^2\right ) k^2-2 k+1}}-\frac {\left (\sqrt {k} c+\sqrt {k c^2+4}\right ) \arctan \left (\frac {-2 \left (2 \left (k^2+1\right )-\left (c k+\sqrt {k c^2+4} \sqrt {k}\right )^2\right ) x^2 k^2+8 k^2-\left (k^2+1\right ) \left (c k+\sqrt {k c^2+4} \sqrt {k}\right )^2}{4 \sqrt {2} k^{3/2} \sqrt {\left (1-c^2\right ) k^2-2 k+1} \sqrt {k c^2+\sqrt {k} \sqrt {k c^2+4} c+2} \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}\right )}{2 \sqrt {2} \sqrt {\left (1-c^2\right ) k^2-2 k+1} \sqrt {k c^2+\sqrt {k} \sqrt {k c^2+4} c+2}}+\frac {\left (k x^2+1\right ) \sqrt {\frac {k^2 x^4-\left (k^2+1\right ) x^2+1}{\left (k x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {k} x\right ),\frac {(k+1)^2}{4 k}\right )}{2 \sqrt {k} \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}-\frac {\left (\sqrt {k} c+\sqrt {k c^2+4}\right )^2 \left (k x^2+1\right ) \sqrt {\frac {k^2 x^4-\left (k^2+1\right ) x^2+1}{\left (k x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {k} x\right ),\frac {(k+1)^2}{4 k}\right )}{4 \sqrt {k} \left (k c^2+\sqrt {k} \sqrt {k c^2+4} c+4\right ) \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}+\frac {c \left (\sqrt {k} c+\sqrt {k c^2+4}\right )^2 \left (k x^2+1\right ) \sqrt {\frac {k^2 x^4-\left (k^2+1\right ) x^2+1}{\left (k x^2+1\right )^2}} \operatorname {EllipticPi}\left (\frac {1}{4} \left (k c^2+4\right ),2 \arctan \left (\sqrt {k} x\right ),\frac {(k+1)^2}{4 k}\right )}{8 \left (k^{3/2} c^3+k \sqrt {k c^2+4} c^2+4 \sqrt {k} c+2 \sqrt {k c^2+4}\right ) \sqrt {k^2 x^4-\left (k^2+1\right ) x^2+1}}\)

input
Int[(1 + k*x^2)/((-1 + c*k*x + k*x^2)*Sqrt[(1 - x^2)*(1 - k^2*x^2)]),x]
 
output
-(ArcTan[(Sqrt[1 - 2*k + (1 - c^2)*k^2]*x)/Sqrt[1 - (1 + k^2)*x^2 + k^2*x^ 
4]]/Sqrt[1 - 2*k + (1 - c^2)*k^2]) - ((c*Sqrt[k] - Sqrt[4 + c^2*k])*ArcTan 
[(8*k^2 - (1 + k^2)*(c*k - Sqrt[k]*Sqrt[4 + c^2*k])^2 - 2*k^2*(2*(1 + k^2) 
 - (c*k - Sqrt[k]*Sqrt[4 + c^2*k])^2)*x^2)/(4*Sqrt[2]*k^(3/2)*Sqrt[1 - 2*k 
 + (1 - c^2)*k^2]*Sqrt[2 + c^2*k - c*Sqrt[k]*Sqrt[4 + c^2*k]]*Sqrt[1 - (1 
+ k^2)*x^2 + k^2*x^4])])/(2*Sqrt[2]*Sqrt[1 - 2*k + (1 - c^2)*k^2]*Sqrt[2 + 
 c^2*k - c*Sqrt[k]*Sqrt[4 + c^2*k]]) - ((c*Sqrt[k] + Sqrt[4 + c^2*k])*ArcT 
an[(8*k^2 - (1 + k^2)*(c*k + Sqrt[k]*Sqrt[4 + c^2*k])^2 - 2*k^2*(2*(1 + k^ 
2) - (c*k + Sqrt[k]*Sqrt[4 + c^2*k])^2)*x^2)/(4*Sqrt[2]*k^(3/2)*Sqrt[1 - 2 
*k + (1 - c^2)*k^2]*Sqrt[2 + c^2*k + c*Sqrt[k]*Sqrt[4 + c^2*k]]*Sqrt[1 - ( 
1 + k^2)*x^2 + k^2*x^4])])/(2*Sqrt[2]*Sqrt[1 - 2*k + (1 - c^2)*k^2]*Sqrt[2 
 + c^2*k + c*Sqrt[k]*Sqrt[4 + c^2*k]]) + ((1 + k*x^2)*Sqrt[(1 - (1 + k^2)* 
x^2 + k^2*x^4)/(1 + k*x^2)^2]*EllipticF[2*ArcTan[Sqrt[k]*x], (1 + k)^2/(4* 
k)])/(2*Sqrt[k]*Sqrt[1 - (1 + k^2)*x^2 + k^2*x^4]) - ((c*Sqrt[k] - Sqrt[4 
+ c^2*k])^2*(1 + k*x^2)*Sqrt[(1 - (1 + k^2)*x^2 + k^2*x^4)/(1 + k*x^2)^2]* 
EllipticF[2*ArcTan[Sqrt[k]*x], (1 + k)^2/(4*k)])/(4*Sqrt[k]*(4 + c^2*k - c 
*Sqrt[k]*Sqrt[4 + c^2*k])*Sqrt[1 - (1 + k^2)*x^2 + k^2*x^4]) - ((c*Sqrt[k] 
 + Sqrt[4 + c^2*k])^2*(1 + k*x^2)*Sqrt[(1 - (1 + k^2)*x^2 + k^2*x^4)/(1 + 
k*x^2)^2]*EllipticF[2*ArcTan[Sqrt[k]*x], (1 + k)^2/(4*k)])/(4*Sqrt[k]*(4 + 
 c^2*k + c*Sqrt[k]*Sqrt[4 + c^2*k])*Sqrt[1 - (1 + k^2)*x^2 + k^2*x^4]) ...
 

3.14.87.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2048
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))*((c_) + (d_.)*(x_)^(n_.)))^(p_) 
, x_Symbol] :> Int[u*(a*c*e + (b*c + a*d)*e*x^n + b*d*e*x^(2*n))^p, x] /; F 
reeQ[{a, b, c, d, e, n, p}, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.14.87.4 Maple [A] (verified)

Time = 3.26 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.92

method result size
default \(-\frac {\ln \left (2\right )+\ln \left (\frac {-\sqrt {\left (c k +k -1\right ) \left (c k -k +1\right )}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}+\left (c \,x^{2}+x \right ) k^{2}+\left (-c -2 x \right ) k +x}{-1+x \left (c +x \right ) k}\right )}{\sqrt {-1+\left (c^{2}-1\right ) k^{2}+2 k}}\) \(92\)
pseudoelliptic \(-\frac {\ln \left (2\right )+\ln \left (\frac {-\sqrt {\left (c k +k -1\right ) \left (c k -k +1\right )}\, \sqrt {\left (x^{2}-1\right ) \left (k^{2} x^{2}-1\right )}+\left (c \,x^{2}+x \right ) k^{2}+\left (-c -2 x \right ) k +x}{-1+x \left (c +x \right ) k}\right )}{\sqrt {-1+\left (c^{2}-1\right ) k^{2}+2 k}}\) \(92\)
elliptic \(\text {Expression too large to display}\) \(1699\)

input
int((k*x^2+1)/(c*k*x+k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x,method=_RETU 
RNVERBOSE)
 
output
-(ln(2)+ln((-((c*k+k-1)*(c*k-k+1))^(1/2)*((x^2-1)*(k^2*x^2-1))^(1/2)+(c*x^ 
2+x)*k^2+(-c-2*x)*k+x)/(-1+x*(c+x)*k)))/(-1+(c^2-1)*k^2+2*k)^(1/2)
 
3.14.87.5 Fricas [A] (verification not implemented)

Time = 0.54 (sec) , antiderivative size = 344, normalized size of antiderivative = 3.44 \[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\left [\frac {\log \left (-\frac {{\left ({\left (2 \, c^{2} - 1\right )} k^{4} + 2 \, k^{3} - k^{2}\right )} x^{4} + 2 \, {\left (c k^{4} - 2 \, c k^{3} + c k^{2}\right )} x^{3} + {\left (2 \, c^{2} - 1\right )} k^{2} - {\left ({\left (c^{2} - 2\right )} k^{4} + 2 \, {\left (c^{2} + 3\right )} k^{3} + {\left (c^{2} - 8\right )} k^{2} + 6 \, k - 2\right )} x^{2} + 2 \, \sqrt {k^{2} x^{4} - {\left (k^{2} + 1\right )} x^{2} + 1} {\left (c k^{2} x^{2} - c k + {\left (k^{2} - 2 \, k + 1\right )} x\right )} \sqrt {{\left (c^{2} - 1\right )} k^{2} + 2 \, k - 1} - 2 \, {\left (c k^{3} - 2 \, c k^{2} + c k\right )} x + 2 \, k - 1}{2 \, c k^{2} x^{3} + k^{2} x^{4} - 2 \, c k x + {\left (c^{2} k^{2} - 2 \, k\right )} x^{2} + 1}\right )}{2 \, \sqrt {{\left (c^{2} - 1\right )} k^{2} + 2 \, k - 1}}, -\frac {\sqrt {-{\left (c^{2} - 1\right )} k^{2} - 2 \, k + 1} \arctan \left (\frac {\sqrt {k^{2} x^{4} - {\left (k^{2} + 1\right )} x^{2} + 1} \sqrt {-{\left (c^{2} - 1\right )} k^{2} - 2 \, k + 1}}{c k^{2} x^{2} - c k + {\left (k^{2} - 2 \, k + 1\right )} x}\right )}{{\left (c^{2} - 1\right )} k^{2} + 2 \, k - 1}\right ] \]

input
integrate((k*x^2+1)/(c*k*x+k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x, algor 
ithm="fricas")
 
output
[1/2*log(-(((2*c^2 - 1)*k^4 + 2*k^3 - k^2)*x^4 + 2*(c*k^4 - 2*c*k^3 + c*k^ 
2)*x^3 + (2*c^2 - 1)*k^2 - ((c^2 - 2)*k^4 + 2*(c^2 + 3)*k^3 + (c^2 - 8)*k^ 
2 + 6*k - 2)*x^2 + 2*sqrt(k^2*x^4 - (k^2 + 1)*x^2 + 1)*(c*k^2*x^2 - c*k + 
(k^2 - 2*k + 1)*x)*sqrt((c^2 - 1)*k^2 + 2*k - 1) - 2*(c*k^3 - 2*c*k^2 + c* 
k)*x + 2*k - 1)/(2*c*k^2*x^3 + k^2*x^4 - 2*c*k*x + (c^2*k^2 - 2*k)*x^2 + 1 
))/sqrt((c^2 - 1)*k^2 + 2*k - 1), -sqrt(-(c^2 - 1)*k^2 - 2*k + 1)*arctan(s 
qrt(k^2*x^4 - (k^2 + 1)*x^2 + 1)*sqrt(-(c^2 - 1)*k^2 - 2*k + 1)/(c*k^2*x^2 
 - c*k + (k^2 - 2*k + 1)*x))/((c^2 - 1)*k^2 + 2*k - 1)]
 
3.14.87.6 Sympy [F]

\[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\int \frac {k x^{2} + 1}{\sqrt {\left (x - 1\right ) \left (x + 1\right ) \left (k x - 1\right ) \left (k x + 1\right )} \left (c k x + k x^{2} - 1\right )}\, dx \]

input
integrate((k*x**2+1)/(c*k*x+k*x**2-1)/((-x**2+1)*(-k**2*x**2+1))**(1/2),x)
 
output
Integral((k*x**2 + 1)/(sqrt((x - 1)*(x + 1)*(k*x - 1)*(k*x + 1))*(c*k*x + 
k*x**2 - 1)), x)
 
3.14.87.7 Maxima [F]

\[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\int { \frac {k x^{2} + 1}{{\left (c k x + k x^{2} - 1\right )} \sqrt {{\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}}} \,d x } \]

input
integrate((k*x^2+1)/(c*k*x+k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x, algor 
ithm="maxima")
 
output
integrate((k*x^2 + 1)/((c*k*x + k*x^2 - 1)*sqrt((k^2*x^2 - 1)*(x^2 - 1))), 
 x)
 
3.14.87.8 Giac [F]

\[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\int { \frac {k x^{2} + 1}{{\left (c k x + k x^{2} - 1\right )} \sqrt {{\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}}} \,d x } \]

input
integrate((k*x^2+1)/(c*k*x+k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x, algor 
ithm="giac")
 
output
integrate((k*x^2 + 1)/((c*k*x + k*x^2 - 1)*sqrt((k^2*x^2 - 1)*(x^2 - 1))), 
 x)
 
3.14.87.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1+k x^2}{\left (-1+c k x+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx=\int \frac {k\,x^2+1}{\sqrt {\left (x^2-1\right )\,\left (k^2\,x^2-1\right )}\,\left (k\,x^2+c\,k\,x-1\right )} \,d x \]

input
int((k*x^2 + 1)/(((x^2 - 1)*(k^2*x^2 - 1))^(1/2)*(k*x^2 + c*k*x - 1)),x)
 
output
int((k*x^2 + 1)/(((x^2 - 1)*(k^2*x^2 - 1))^(1/2)*(k*x^2 + c*k*x - 1)), x)