3.15.17 \(\int \frac {x^4}{(-1+x^4)^2 \sqrt [4]{x^2+x^4}} \, dx\) [1417]

3.15.17.1 Optimal result
3.15.17.2 Mathematica [A] (verified)
3.15.17.3 Rubi [C] (verified)
3.15.17.4 Maple [A] (verified)
3.15.17.5 Fricas [C] (verification not implemented)
3.15.17.6 Sympy [F]
3.15.17.7 Maxima [F]
3.15.17.8 Giac [A] (verification not implemented)
3.15.17.9 Mupad [F(-1)]

3.15.17.1 Optimal result

Integrand size = 22, antiderivative size = 101 \[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {\left (-5-2 x^2-13 x^4\right ) \left (x^2+x^4\right )^{3/4}}{80 x \left (-1+x^2\right ) \left (1+x^2\right )^2}-\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^2+x^4}}\right )}{32 \sqrt [4]{2}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^2+x^4}}\right )}{32 \sqrt [4]{2}} \]

output
1/80*(-13*x^4-2*x^2-5)*(x^4+x^2)^(3/4)/x/(x^2-1)/(x^2+1)^2-1/64*arctan(2^( 
1/4)*x/(x^4+x^2)^(1/4))*2^(3/4)-1/64*arctanh(2^(1/4)*x/(x^4+x^2)^(1/4))*2^ 
(3/4)
 
3.15.17.2 Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.30 \[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=-\frac {\sqrt {x} \left (4 \sqrt {x} \left (5+2 x^2+13 x^4\right )+5\ 2^{3/4} \sqrt [4]{1+x^2} \left (-1+x^4\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt {x}}{\sqrt [4]{1+x^2}}\right )+5\ 2^{3/4} \sqrt [4]{1+x^2} \left (-1+x^4\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt {x}}{\sqrt [4]{1+x^2}}\right )\right )}{320 \left (-1+x^4\right ) \sqrt [4]{x^2+x^4}} \]

input
Integrate[x^4/((-1 + x^4)^2*(x^2 + x^4)^(1/4)),x]
 
output
-1/320*(Sqrt[x]*(4*Sqrt[x]*(5 + 2*x^2 + 13*x^4) + 5*2^(3/4)*(1 + x^2)^(1/4 
)*(-1 + x^4)*ArcTan[(2^(1/4)*Sqrt[x])/(1 + x^2)^(1/4)] + 5*2^(3/4)*(1 + x^ 
2)^(1/4)*(-1 + x^4)*ArcTanh[(2^(1/4)*Sqrt[x])/(1 + x^2)^(1/4)]))/((-1 + x^ 
4)*(x^2 + x^4)^(1/4))
 
3.15.17.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.41 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.08, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2467, 1388, 368, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (x^4-1\right )^2 \sqrt [4]{x^4+x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^{7/2}}{\sqrt [4]{x^2+1} \left (1-x^4\right )^2}dx}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1388

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^{7/2}}{\left (1-x^2\right )^2 \left (x^2+1\right )^{9/4}}dx}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 368

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^4}{\left (1-x^2\right )^2 \left (x^2+1\right )^{9/4}}d\sqrt {x}}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {128 x^5 \operatorname {Gamma}\left (\frac {13}{4}\right ) \left (17 \left (-4 x^4-9 x^2+13\right ) \operatorname {Hypergeometric2F1}\left (1,2,\frac {17}{4},-\frac {2 x^2}{1-x^2}\right )-64 x^2 \left (x^2+1\right ) \operatorname {Hypergeometric2F1}\left (2,3,\frac {21}{4},-\frac {2 x^2}{1-x^2}\right )\right )}{89505 \left (1-x^2\right )^3 \left (x^2+1\right ) \sqrt [4]{x^4+x^2} \operatorname {Gamma}\left (\frac {1}{4}\right )}\)

input
Int[x^4/((-1 + x^4)^2*(x^2 + x^4)^(1/4)),x]
 
output
(128*x^5*Gamma[13/4]*(17*(13 - 9*x^2 - 4*x^4)*Hypergeometric2F1[1, 2, 17/4 
, (-2*x^2)/(1 - x^2)] - 64*x^2*(1 + x^2)*Hypergeometric2F1[2, 3, 21/4, (-2 
*x^2)/(1 - x^2)]))/(89505*(1 - x^2)^3*(1 + x^2)*(x^2 + x^4)^(1/4)*Gamma[1/ 
4])
 

3.15.17.3.1 Defintions of rubi rules used

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.15.17.4 Maple [A] (verified)

Time = 4.98 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.21

method result size
pseudoelliptic \(\frac {5 \left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}} \left (x^{4}-1\right ) \left (2 \arctan \left (\frac {\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}} 2^{\frac {3}{4}}}{2 x}\right )-\ln \left (\frac {2^{\frac {1}{4}} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{-2^{\frac {1}{4}} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}\right )\right ) 2^{\frac {3}{4}}-104 x^{5}-16 x^{3}-40 x}{\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}} \left (640 x^{4}-640\right )}\) \(122\)
trager \(-\frac {\left (13 x^{4}+2 x^{2}+5\right ) \left (x^{4}+x^{2}\right )^{\frac {3}{4}}}{80 \left (x^{2}-1\right ) \left (x^{2}+1\right )^{2} x}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) \ln \left (\frac {-\sqrt {x^{4}+x^{2}}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2} x -2 \left (x^{4}+x^{2}\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2} x^{2}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) x^{3}+4 \left (x^{4}+x^{2}\right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) x}{\left (1+x \right ) \left (-1+x \right ) x}\right )}{128}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right ) \ln \left (\frac {\sqrt {x^{4}+x^{2}}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{3} x +2 \left (x^{4}+x^{2}\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2} x^{2}+3 \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right ) x^{3}+4 \left (x^{4}+x^{2}\right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right ) x}{\left (1+x \right ) \left (-1+x \right ) x}\right )}{128}\) \(267\)
risch \(-\frac {x \left (13 x^{4}+2 x^{2}+5\right )}{80 \left (x^{2}-1\right ) \left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}} \left (x^{2}+1\right )}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right ) \ln \left (\frac {\sqrt {x^{4}+x^{2}}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{3} x +2 \left (x^{4}+x^{2}\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2} x^{2}+3 \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right ) x^{3}+4 \left (x^{4}+x^{2}\right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right ) x}{\left (1+x \right ) \left (-1+x \right ) x}\right )}{128}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) \ln \left (\frac {\sqrt {x^{4}+x^{2}}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2} x -2 \left (x^{4}+x^{2}\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2} x^{2}-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) x^{3}+4 \left (x^{4}+x^{2}\right )^{\frac {3}{4}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-8\right )^{2}\right ) x}{\left (1+x \right ) \left (-1+x \right ) x}\right )}{128}\) \(267\)

input
int(x^4/(x^4-1)^2/(x^4+x^2)^(1/4),x,method=_RETURNVERBOSE)
 
output
10/(x^2*(x^2+1))^(1/4)*(1/2*(x^2*(x^2+1))^(1/4)*(x^4-1)*(2*arctan(1/2*(x^2 
*(x^2+1))^(1/4)/x*2^(3/4))-ln((2^(1/4)*x+(x^2*(x^2+1))^(1/4))/(-2^(1/4)*x+ 
(x^2*(x^2+1))^(1/4))))*2^(3/4)-52/5*x^5-8/5*x^3-4*x)/(640*x^4-640)
 
3.15.17.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.01 (sec) , antiderivative size = 404, normalized size of antiderivative = 4.00 \[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=-\frac {5 \cdot 2^{\frac {3}{4}} {\left (x^{7} + x^{5} - x^{3} - x\right )} \log \left (\frac {4 \, \sqrt {2} {\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} x^{2} + 2^{\frac {3}{4}} {\left (3 \, x^{3} + x\right )} + 4 \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + x^{2}} x + 4 \, {\left (x^{4} + x^{2}\right )}^{\frac {3}{4}}}{x^{3} - x}\right ) - 5 \cdot 2^{\frac {3}{4}} {\left (x^{7} + x^{5} - x^{3} - x\right )} \log \left (\frac {4 \, \sqrt {2} {\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} x^{2} - 2^{\frac {3}{4}} {\left (3 \, x^{3} + x\right )} - 4 \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + x^{2}} x + 4 \, {\left (x^{4} + x^{2}\right )}^{\frac {3}{4}}}{x^{3} - x}\right ) + 5 \cdot 2^{\frac {3}{4}} {\left (i \, x^{7} + i \, x^{5} - i \, x^{3} - i \, x\right )} \log \left (-\frac {4 \, \sqrt {2} {\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} x^{2} - 2^{\frac {3}{4}} {\left (3 i \, x^{3} + i \, x\right )} + 4 i \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + x^{2}} x - 4 \, {\left (x^{4} + x^{2}\right )}^{\frac {3}{4}}}{x^{3} - x}\right ) + 5 \cdot 2^{\frac {3}{4}} {\left (-i \, x^{7} - i \, x^{5} + i \, x^{3} + i \, x\right )} \log \left (-\frac {4 \, \sqrt {2} {\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} x^{2} - 2^{\frac {3}{4}} {\left (-3 i \, x^{3} - i \, x\right )} - 4 i \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + x^{2}} x - 4 \, {\left (x^{4} + x^{2}\right )}^{\frac {3}{4}}}{x^{3} - x}\right ) + 16 \, {\left (13 \, x^{4} + 2 \, x^{2} + 5\right )} {\left (x^{4} + x^{2}\right )}^{\frac {3}{4}}}{1280 \, {\left (x^{7} + x^{5} - x^{3} - x\right )}} \]

input
integrate(x^4/(x^4-1)^2/(x^4+x^2)^(1/4),x, algorithm="fricas")
 
output
-1/1280*(5*2^(3/4)*(x^7 + x^5 - x^3 - x)*log((4*sqrt(2)*(x^4 + x^2)^(1/4)* 
x^2 + 2^(3/4)*(3*x^3 + x) + 4*2^(1/4)*sqrt(x^4 + x^2)*x + 4*(x^4 + x^2)^(3 
/4))/(x^3 - x)) - 5*2^(3/4)*(x^7 + x^5 - x^3 - x)*log((4*sqrt(2)*(x^4 + x^ 
2)^(1/4)*x^2 - 2^(3/4)*(3*x^3 + x) - 4*2^(1/4)*sqrt(x^4 + x^2)*x + 4*(x^4 
+ x^2)^(3/4))/(x^3 - x)) + 5*2^(3/4)*(I*x^7 + I*x^5 - I*x^3 - I*x)*log(-(4 
*sqrt(2)*(x^4 + x^2)^(1/4)*x^2 - 2^(3/4)*(3*I*x^3 + I*x) + 4*I*2^(1/4)*sqr 
t(x^4 + x^2)*x - 4*(x^4 + x^2)^(3/4))/(x^3 - x)) + 5*2^(3/4)*(-I*x^7 - I*x 
^5 + I*x^3 + I*x)*log(-(4*sqrt(2)*(x^4 + x^2)^(1/4)*x^2 - 2^(3/4)*(-3*I*x^ 
3 - I*x) - 4*I*2^(1/4)*sqrt(x^4 + x^2)*x - 4*(x^4 + x^2)^(3/4))/(x^3 - x)) 
 + 16*(13*x^4 + 2*x^2 + 5)*(x^4 + x^2)^(3/4))/(x^7 + x^5 - x^3 - x)
 
3.15.17.6 Sympy [F]

\[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int \frac {x^{4}}{\sqrt [4]{x^{2} \left (x^{2} + 1\right )} \left (x - 1\right )^{2} \left (x + 1\right )^{2} \left (x^{2} + 1\right )^{2}}\, dx \]

input
integrate(x**4/(x**4-1)**2/(x**4+x**2)**(1/4),x)
 
output
Integral(x**4/((x**2*(x**2 + 1))**(1/4)*(x - 1)**2*(x + 1)**2*(x**2 + 1)** 
2), x)
 
3.15.17.7 Maxima [F]

\[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int { \frac {x^{4}}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} - 1\right )}^{2}} \,d x } \]

input
integrate(x^4/(x^4-1)^2/(x^4+x^2)^(1/4),x, algorithm="maxima")
 
output
2/21*(4*x^5 + x^3 - 3*x)*x^(7/2)/((x^8 - 2*x^4 + 1)*(x^2 + 1)^(1/4)) + int 
egrate(16/21*(4*x^4 + x^2 - 3)*x^(7/2)/((x^12 - 3*x^8 + 3*x^4 - 1)*(x^2 + 
1)^(1/4)), x)
 
3.15.17.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.80 \[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {1}{64} \cdot 2^{\frac {3}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}}\right ) - \frac {1}{128} \cdot 2^{\frac {3}{4}} \log \left (2^{\frac {1}{4}} + {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}}\right ) + \frac {1}{128} \cdot 2^{\frac {3}{4}} \log \left ({\left | -2^{\frac {1}{4}} + {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} \right |}\right ) + \frac {{\left (\frac {1}{x^{2}} + 1\right )}^{\frac {3}{4}}}{16 \, {\left (\frac {1}{x^{2}} - 1\right )}} - \frac {1}{10 \, {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {5}{4}}} \]

input
integrate(x^4/(x^4-1)^2/(x^4+x^2)^(1/4),x, algorithm="giac")
 
output
1/64*2^(3/4)*arctan(1/2*2^(3/4)*(1/x^2 + 1)^(1/4)) - 1/128*2^(3/4)*log(2^( 
1/4) + (1/x^2 + 1)^(1/4)) + 1/128*2^(3/4)*log(abs(-2^(1/4) + (1/x^2 + 1)^( 
1/4))) + 1/16*(1/x^2 + 1)^(3/4)/(1/x^2 - 1) - 1/10/(1/x^2 + 1)^(5/4)
 
3.15.17.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (-1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int \frac {x^4}{{\left (x^4+x^2\right )}^{1/4}\,{\left (x^4-1\right )}^2} \,d x \]

input
int(x^4/((x^2 + x^4)^(1/4)*(x^4 - 1)^2),x)
 
output
int(x^4/((x^2 + x^4)^(1/4)*(x^4 - 1)^2), x)