3.15.33 \(\int \frac {(-1+x^2) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx\) [1433]

3.15.33.1 Optimal result
3.15.33.2 Mathematica [A] (verified)
3.15.33.3 Rubi [F]
3.15.33.4 Maple [N/A] (verified)
3.15.33.5 Fricas [C] (verification not implemented)
3.15.33.6 Sympy [F(-1)]
3.15.33.7 Maxima [N/A]
3.15.33.8 Giac [F(-2)]
3.15.33.9 Mupad [N/A]

3.15.33.1 Optimal result

Integrand size = 26, antiderivative size = 101 \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\frac {4}{15} \sqrt {1+x} \sqrt {1+\sqrt {1+x}}+\frac {4}{15} (1+3 x) \sqrt {1+\sqrt {1+x}}-\text {RootSum}\left [1+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {1+x}}-\text {$\#$1}\right )}{-2 \text {$\#$1}+\text {$\#$1}^3}\&\right ] \]

output
Unintegrable
 
3.15.33.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.85 \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\frac {4}{15} \sqrt {1+\sqrt {1+x}} \left (-2+\sqrt {1+x}+3 (1+x)\right )-\text {RootSum}\left [1+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {1+x}}-\text {$\#$1}\right )}{-2 \text {$\#$1}+\text {$\#$1}^3}\&\right ] \]

input
Integrate[((-1 + x^2)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^2),x]
 
output
(4*Sqrt[1 + Sqrt[1 + x]]*(-2 + Sqrt[1 + x] + 3*(1 + x)))/15 - RootSum[1 + 
4*#1^4 - 4*#1^6 + #1^8 & , Log[Sqrt[1 + Sqrt[1 + x]] - #1]/(-2*#1 + #1^3) 
& ]
 
3.15.33.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2-1\right ) \sqrt {\sqrt {x+1}+1}}{x^2+1} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 \int -\frac {(1-x) (x+1)^{3/2} \sqrt {\sqrt {x+1}+1}}{(x+1)^2-2 (x+1)+2}d\sqrt {x+1}\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \int \frac {(1-x) (x+1)^{3/2} \sqrt {\sqrt {x+1}+1}}{(x+1)^2-2 (x+1)+2}d\sqrt {x+1}\)

\(\Big \downarrow \) 7267

\(\displaystyle 4 \int -\frac {x^3 (x+1) \left (-(x+1)^2+2 (x+1)+1\right )}{(x+1)^4-4 (x+1)^3+4 (x+1)^2+1}d\sqrt {\sqrt {x+1}+1}\)

\(\Big \downarrow \) 7293

\(\displaystyle 4 \int \left ((x+1)^2-\frac {2 x (x+1)}{(x+1)^4-4 (x+1)^3+4 (x+1)^2+1}-x-1\right )d\sqrt {\sqrt {x+1}+1}\)

\(\Big \downarrow \) 2009

\(\displaystyle 4 \left (2 \int \frac {x+1}{(x+1)^4-4 (x+1)^3+4 (x+1)^2+1}d\sqrt {\sqrt {x+1}+1}-2 \int \frac {(x+1)^2}{(x+1)^4-4 (x+1)^3+4 (x+1)^2+1}d\sqrt {\sqrt {x+1}+1}+\frac {1}{5} (x+1)^{5/2}-\frac {1}{3} (x+1)^{3/2}\right )\)

input
Int[((-1 + x^2)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^2),x]
 
output
$Aborted
 

3.15.33.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.15.33.4 Maple [N/A] (verified)

Time = 0.05 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.84

method result size
derivativedivides \(\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {5}{2}}}{5}-\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {3}{2}}}{3}-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-4 \textit {\_Z}^{6}+4 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\left (\textit {\_R}^{4}-\textit {\_R}^{2}\right ) \ln \left (\sqrt {1+\sqrt {1+x}}-\textit {\_R} \right )}{\textit {\_R}^{7}-3 \textit {\_R}^{5}+2 \textit {\_R}^{3}}\right )\) \(85\)
default \(\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {5}{2}}}{5}-\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {3}{2}}}{3}-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-4 \textit {\_Z}^{6}+4 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\left (\textit {\_R}^{4}-\textit {\_R}^{2}\right ) \ln \left (\sqrt {1+\sqrt {1+x}}-\textit {\_R} \right )}{\textit {\_R}^{7}-3 \textit {\_R}^{5}+2 \textit {\_R}^{3}}\right )\) \(85\)

input
int((x^2-1)*(1+(1+x)^(1/2))^(1/2)/(x^2+1),x,method=_RETURNVERBOSE)
 
output
4/5*(1+(1+x)^(1/2))^(5/2)-4/3*(1+(1+x)^(1/2))^(3/2)-sum((_R^4-_R^2)/(_R^7- 
3*_R^5+2*_R^3)*ln((1+(1+x)^(1/2))^(1/2)-_R),_R=RootOf(_Z^8-4*_Z^6+4*_Z^4+1 
))
 
3.15.33.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.31 (sec) , antiderivative size = 302, normalized size of antiderivative = 2.99 \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\frac {4}{15} \, {\left (3 \, x + \sqrt {x + 1} + 1\right )} \sqrt {\sqrt {x + 1} + 1} + \frac {1}{2} \, \sqrt {2 \, \sqrt {4 i + 4} - 4} \log \left (i \, \sqrt {2 \, \sqrt {4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) - \frac {1}{2} \, \sqrt {2 \, \sqrt {4 i + 4} - 4} \log \left (-i \, \sqrt {2 \, \sqrt {4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) + \frac {1}{2} \, \sqrt {-2 \, \sqrt {4 i + 4} - 4} \log \left (i \, \sqrt {-2 \, \sqrt {4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) - \frac {1}{2} \, \sqrt {-2 \, \sqrt {4 i + 4} - 4} \log \left (-i \, \sqrt {-2 \, \sqrt {4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) - \frac {1}{2} \, \sqrt {2 \, \sqrt {-4 i + 4} - 4} \log \left (i \, \sqrt {2 \, \sqrt {-4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) + \frac {1}{2} \, \sqrt {2 \, \sqrt {-4 i + 4} - 4} \log \left (-i \, \sqrt {2 \, \sqrt {-4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) - \frac {1}{2} \, \sqrt {-2 \, \sqrt {-4 i + 4} - 4} \log \left (i \, \sqrt {-2 \, \sqrt {-4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) + \frac {1}{2} \, \sqrt {-2 \, \sqrt {-4 i + 4} - 4} \log \left (-i \, \sqrt {-2 \, \sqrt {-4 i + 4} - 4} + 2 \, \sqrt {\sqrt {x + 1} + 1}\right ) \]

input
integrate((x^2-1)*(1+(1+x)^(1/2))^(1/2)/(x^2+1),x, algorithm="fricas")
 
output
4/15*(3*x + sqrt(x + 1) + 1)*sqrt(sqrt(x + 1) + 1) + 1/2*sqrt(2*sqrt(4*I + 
 4) - 4)*log(I*sqrt(2*sqrt(4*I + 4) - 4) + 2*sqrt(sqrt(x + 1) + 1)) - 1/2* 
sqrt(2*sqrt(4*I + 4) - 4)*log(-I*sqrt(2*sqrt(4*I + 4) - 4) + 2*sqrt(sqrt(x 
 + 1) + 1)) + 1/2*sqrt(-2*sqrt(4*I + 4) - 4)*log(I*sqrt(-2*sqrt(4*I + 4) - 
 4) + 2*sqrt(sqrt(x + 1) + 1)) - 1/2*sqrt(-2*sqrt(4*I + 4) - 4)*log(-I*sqr 
t(-2*sqrt(4*I + 4) - 4) + 2*sqrt(sqrt(x + 1) + 1)) - 1/2*sqrt(2*sqrt(-4*I 
+ 4) - 4)*log(I*sqrt(2*sqrt(-4*I + 4) - 4) + 2*sqrt(sqrt(x + 1) + 1)) + 1/ 
2*sqrt(2*sqrt(-4*I + 4) - 4)*log(-I*sqrt(2*sqrt(-4*I + 4) - 4) + 2*sqrt(sq 
rt(x + 1) + 1)) - 1/2*sqrt(-2*sqrt(-4*I + 4) - 4)*log(I*sqrt(-2*sqrt(-4*I 
+ 4) - 4) + 2*sqrt(sqrt(x + 1) + 1)) + 1/2*sqrt(-2*sqrt(-4*I + 4) - 4)*log 
(-I*sqrt(-2*sqrt(-4*I + 4) - 4) + 2*sqrt(sqrt(x + 1) + 1))
 
3.15.33.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\text {Timed out} \]

input
integrate((x**2-1)*(1+(1+x)**(1/2))**(1/2)/(x**2+1),x)
 
output
Timed out
 
3.15.33.7 Maxima [N/A]

Not integrable

Time = 0.34 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.24 \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\int { \frac {{\left (x^{2} - 1\right )} \sqrt {\sqrt {x + 1} + 1}}{x^{2} + 1} \,d x } \]

input
integrate((x^2-1)*(1+(1+x)^(1/2))^(1/2)/(x^2+1),x, algorithm="maxima")
 
output
integrate((x^2 - 1)*sqrt(sqrt(x + 1) + 1)/(x^2 + 1), x)
 
3.15.33.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((x^2-1)*(1+(1+x)^(1/2))^(1/2)/(x^2+1),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Invalid _EXT in replace_ext Error: 
Bad Argument ValueInvalid _EXT in replace_ext Error: Bad Argument ValueDon 
e
 
3.15.33.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.24 \[ \int \frac {\left (-1+x^2\right ) \sqrt {1+\sqrt {1+x}}}{1+x^2} \, dx=\int \frac {\left (x^2-1\right )\,\sqrt {\sqrt {x+1}+1}}{x^2+1} \,d x \]

input
int(((x^2 - 1)*((x + 1)^(1/2) + 1)^(1/2))/(x^2 + 1),x)
 
output
int(((x^2 - 1)*((x + 1)^(1/2) + 1)^(1/2))/(x^2 + 1), x)