3.15.91 \(\int \frac {(1-x^3+x^5) (-3+2 x^5)}{x^3 (1+x^3+x^5) \sqrt [4]{x+x^6}} \, dx\) [1491]

3.15.91.1 Optimal result
3.15.91.2 Mathematica [F]
3.15.91.3 Rubi [F]
3.15.91.4 Maple [A] (verified)
3.15.91.5 Fricas [C] (verification not implemented)
3.15.91.6 Sympy [F]
3.15.91.7 Maxima [F]
3.15.91.8 Giac [F]
3.15.91.9 Mupad [F(-1)]

3.15.91.1 Optimal result

Integrand size = 40, antiderivative size = 104 \[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\frac {4 \left (x+x^6\right )^{3/4}}{3 x^3}+2 \sqrt {2} \arctan \left (\frac {\sqrt {2} x \sqrt [4]{x+x^6}}{-x^2+\sqrt {x+x^6}}\right )+2 \sqrt {2} \text {arctanh}\left (\frac {\frac {x^2}{\sqrt {2}}+\frac {\sqrt {x+x^6}}{\sqrt {2}}}{x \sqrt [4]{x+x^6}}\right ) \]

output
4/3*(x^6+x)^(3/4)/x^3+2*2^(1/2)*arctan(2^(1/2)*x*(x^6+x)^(1/4)/(-x^2+(x^6+ 
x)^(1/2)))+2*2^(1/2)*arctanh((1/2*2^(1/2)*x^2+1/2*(x^6+x)^(1/2)*2^(1/2))/x 
/(x^6+x)^(1/4))
 
3.15.91.2 Mathematica [F]

\[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx \]

input
Integrate[((1 - x^3 + x^5)*(-3 + 2*x^5))/(x^3*(1 + x^3 + x^5)*(x + x^6)^(1 
/4)),x]
 
output
Integrate[((1 - x^3 + x^5)*(-3 + 2*x^5))/(x^3*(1 + x^3 + x^5)*(x + x^6)^(1 
/4)), x]
 
3.15.91.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^5-x^3+1\right ) \left (2 x^5-3\right )}{x^3 \left (x^5+x^3+1\right ) \sqrt [4]{x^6+x}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x} \sqrt [4]{x^5+1} \int -\frac {\left (3-2 x^5\right ) \left (x^5-x^3+1\right )}{x^{13/4} \sqrt [4]{x^5+1} \left (x^5+x^3+1\right )}dx}{\sqrt [4]{x^6+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x} \sqrt [4]{x^5+1} \int \frac {\left (3-2 x^5\right ) \left (x^5-x^3+1\right )}{x^{13/4} \sqrt [4]{x^5+1} \left (x^5+x^3+1\right )}dx}{\sqrt [4]{x^6+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^5+1} \int \frac {\left (3-2 x^5\right ) \left (x^5-x^3+1\right )}{x^{5/2} \sqrt [4]{x^5+1} \left (x^5+x^3+1\right )}d\sqrt [4]{x}}{\sqrt [4]{x^6+x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^5+1} \int \left (-\frac {2 x^{5/2}}{\sqrt [4]{x^5+1}}+\frac {4 \sqrt {x}}{\sqrt [4]{x^5+1}}-\frac {2 \left (2 x^3+5\right ) \sqrt {x}}{\sqrt [4]{x^5+1} \left (x^5+x^3+1\right )}+\frac {3}{\sqrt [4]{x^5+1} x^{5/2}}\right )d\sqrt [4]{x}}{\sqrt [4]{x^6+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 \sqrt [4]{x} \sqrt [4]{x^5+1} \left (-10 \int \frac {\sqrt {x}}{\sqrt [4]{x^5+1} \left (x^5+x^3+1\right )}d\sqrt [4]{x}-4 \int \frac {x^{7/2}}{\sqrt [4]{x^5+1} \left (x^5+x^3+1\right )}d\sqrt [4]{x}-\frac {2}{11} x^{11/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {11}{20},\frac {31}{20},-x^5\right )+\frac {4}{3} x^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {3}{20},\frac {1}{4},\frac {23}{20},-x^5\right )-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {9}{20},\frac {1}{4},\frac {11}{20},-x^5\right )}{3 x^{9/4}}\right )}{\sqrt [4]{x^6+x}}\)

input
Int[((1 - x^3 + x^5)*(-3 + 2*x^5))/(x^3*(1 + x^3 + x^5)*(x + x^6)^(1/4)),x 
]
 
output
$Aborted
 

3.15.91.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.15.91.4 Maple [A] (verified)

Time = 13.35 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.14

method result size
pseudoelliptic \(\frac {4 \left (x^{6}+x \right )^{\frac {3}{4}}+\left (-6 \arctan \left (\frac {\left (x^{6}+x \right )^{\frac {1}{4}} \sqrt {2}-x}{x}\right )-6 \arctan \left (\frac {\left (x^{6}+x \right )^{\frac {1}{4}} \sqrt {2}+x}{x}\right )-3 \ln \left (\frac {-\left (x^{6}+x \right )^{\frac {1}{4}} \sqrt {2}\, x +x^{2}+\sqrt {x^{6}+x}}{\left (x^{6}+x \right )^{\frac {1}{4}} \sqrt {2}\, x +x^{2}+\sqrt {x^{6}+x}}\right )\right ) x^{3} \sqrt {2}}{3 x^{3}}\) \(119\)
trager \(\frac {4 \left (x^{6}+x \right )^{\frac {3}{4}}}{3 x^{3}}+2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} x^{5}-\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} x^{3}+2 \left (x^{6}+x \right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x^{2}-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \sqrt {x^{6}+x}\, x +2 \left (x^{6}+x \right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3}}{x^{5}+x^{3}+1}\right )-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \ln \left (-\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \sqrt {x^{6}+x}\, x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x^{5}-2 \left (x^{6}+x \right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x^{3}+2 \left (x^{6}+x \right )^{\frac {3}{4}}-\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )}{x^{5}+x^{3}+1}\right )\) \(213\)
risch \(\frac {\frac {4 x^{5}}{3}+\frac {4}{3}}{x^{2} {\left (x \left (x^{5}+1\right )\right )}^{\frac {1}{4}}}+2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \ln \left (-\frac {-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \sqrt {x^{6}+x}\, x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x^{5}-2 \left (x^{6}+x \right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x^{3}+2 \left (x^{6}+x \right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )}{x^{5}+x^{3}+1}\right )+2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} x^{5}-\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} x^{3}+2 \left (x^{6}+x \right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x^{2}-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \sqrt {x^{6}+x}\, x +2 \left (x^{6}+x \right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3}}{x^{5}+x^{3}+1}\right )\) \(219\)

input
int((x^5-x^3+1)*(2*x^5-3)/x^3/(x^5+x^3+1)/(x^6+x)^(1/4),x,method=_RETURNVE 
RBOSE)
 
output
1/3*(4*(x^6+x)^(3/4)+(-6*arctan(((x^6+x)^(1/4)*2^(1/2)-x)/x)-6*arctan(((x^ 
6+x)^(1/4)*2^(1/2)+x)/x)-3*ln((-(x^6+x)^(1/4)*2^(1/2)*x+x^2+(x^6+x)^(1/2)) 
/((x^6+x)^(1/4)*2^(1/2)*x+x^2+(x^6+x)^(1/2))))*x^3*2^(1/2))/x^3
 
3.15.91.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 81.97 (sec) , antiderivative size = 299, normalized size of antiderivative = 2.88 \[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\frac {-\left (3 i + 3\right ) \, \sqrt {2} x^{3} \log \left (\frac {4 i \, {\left (x^{6} + x\right )}^{\frac {1}{4}} x^{2} - \left (2 i - 2\right ) \, \sqrt {2} \sqrt {x^{6} + x} x + \sqrt {2} {\left (\left (i + 1\right ) \, x^{5} - \left (i + 1\right ) \, x^{3} + i + 1\right )} - 4 \, {\left (x^{6} + x\right )}^{\frac {3}{4}}}{x^{5} + x^{3} + 1}\right ) + \left (3 i + 3\right ) \, \sqrt {2} x^{3} \log \left (\frac {4 i \, {\left (x^{6} + x\right )}^{\frac {1}{4}} x^{2} + \left (2 i - 2\right ) \, \sqrt {2} \sqrt {x^{6} + x} x + \sqrt {2} {\left (-\left (i + 1\right ) \, x^{5} + \left (i + 1\right ) \, x^{3} - i - 1\right )} - 4 \, {\left (x^{6} + x\right )}^{\frac {3}{4}}}{x^{5} + x^{3} + 1}\right ) + \left (3 i - 3\right ) \, \sqrt {2} x^{3} \log \left (\frac {-4 i \, {\left (x^{6} + x\right )}^{\frac {1}{4}} x^{2} + \left (2 i + 2\right ) \, \sqrt {2} \sqrt {x^{6} + x} x + \sqrt {2} {\left (-\left (i - 1\right ) \, x^{5} + \left (i - 1\right ) \, x^{3} - i + 1\right )} - 4 \, {\left (x^{6} + x\right )}^{\frac {3}{4}}}{x^{5} + x^{3} + 1}\right ) - \left (3 i - 3\right ) \, \sqrt {2} x^{3} \log \left (\frac {-4 i \, {\left (x^{6} + x\right )}^{\frac {1}{4}} x^{2} - \left (2 i + 2\right ) \, \sqrt {2} \sqrt {x^{6} + x} x + \sqrt {2} {\left (\left (i - 1\right ) \, x^{5} - \left (i - 1\right ) \, x^{3} + i - 1\right )} - 4 \, {\left (x^{6} + x\right )}^{\frac {3}{4}}}{x^{5} + x^{3} + 1}\right ) + 8 \, {\left (x^{6} + x\right )}^{\frac {3}{4}}}{6 \, x^{3}} \]

input
integrate((x^5-x^3+1)*(2*x^5-3)/x^3/(x^5+x^3+1)/(x^6+x)^(1/4),x, algorithm 
="fricas")
 
output
1/6*(-(3*I + 3)*sqrt(2)*x^3*log((4*I*(x^6 + x)^(1/4)*x^2 - (2*I - 2)*sqrt( 
2)*sqrt(x^6 + x)*x + sqrt(2)*((I + 1)*x^5 - (I + 1)*x^3 + I + 1) - 4*(x^6 
+ x)^(3/4))/(x^5 + x^3 + 1)) + (3*I + 3)*sqrt(2)*x^3*log((4*I*(x^6 + x)^(1 
/4)*x^2 + (2*I - 2)*sqrt(2)*sqrt(x^6 + x)*x + sqrt(2)*(-(I + 1)*x^5 + (I + 
 1)*x^3 - I - 1) - 4*(x^6 + x)^(3/4))/(x^5 + x^3 + 1)) + (3*I - 3)*sqrt(2) 
*x^3*log((-4*I*(x^6 + x)^(1/4)*x^2 + (2*I + 2)*sqrt(2)*sqrt(x^6 + x)*x + s 
qrt(2)*(-(I - 1)*x^5 + (I - 1)*x^3 - I + 1) - 4*(x^6 + x)^(3/4))/(x^5 + x^ 
3 + 1)) - (3*I - 3)*sqrt(2)*x^3*log((-4*I*(x^6 + x)^(1/4)*x^2 - (2*I + 2)* 
sqrt(2)*sqrt(x^6 + x)*x + sqrt(2)*((I - 1)*x^5 - (I - 1)*x^3 + I - 1) - 4* 
(x^6 + x)^(3/4))/(x^5 + x^3 + 1)) + 8*(x^6 + x)^(3/4))/x^3
 
3.15.91.6 Sympy [F]

\[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\int \frac {\left (2 x^{5} - 3\right ) \left (x^{5} - x^{3} + 1\right )}{x^{3} \sqrt [4]{x \left (x + 1\right ) \left (x^{4} - x^{3} + x^{2} - x + 1\right )} \left (x^{5} + x^{3} + 1\right )}\, dx \]

input
integrate((x**5-x**3+1)*(2*x**5-3)/x**3/(x**5+x**3+1)/(x**6+x)**(1/4),x)
 
output
Integral((2*x**5 - 3)*(x**5 - x**3 + 1)/(x**3*(x*(x + 1)*(x**4 - x**3 + x* 
*2 - x + 1))**(1/4)*(x**5 + x**3 + 1)), x)
 
3.15.91.7 Maxima [F]

\[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\int { \frac {{\left (2 \, x^{5} - 3\right )} {\left (x^{5} - x^{3} + 1\right )}}{{\left (x^{6} + x\right )}^{\frac {1}{4}} {\left (x^{5} + x^{3} + 1\right )} x^{3}} \,d x } \]

input
integrate((x^5-x^3+1)*(2*x^5-3)/x^3/(x^5+x^3+1)/(x^6+x)^(1/4),x, algorithm 
="maxima")
 
output
integrate((2*x^5 - 3)*(x^5 - x^3 + 1)/((x^6 + x)^(1/4)*(x^5 + x^3 + 1)*x^3 
), x)
 
3.15.91.8 Giac [F]

\[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\int { \frac {{\left (2 \, x^{5} - 3\right )} {\left (x^{5} - x^{3} + 1\right )}}{{\left (x^{6} + x\right )}^{\frac {1}{4}} {\left (x^{5} + x^{3} + 1\right )} x^{3}} \,d x } \]

input
integrate((x^5-x^3+1)*(2*x^5-3)/x^3/(x^5+x^3+1)/(x^6+x)^(1/4),x, algorithm 
="giac")
 
output
integrate((2*x^5 - 3)*(x^5 - x^3 + 1)/((x^6 + x)^(1/4)*(x^5 + x^3 + 1)*x^3 
), x)
 
3.15.91.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1-x^3+x^5\right ) \left (-3+2 x^5\right )}{x^3 \left (1+x^3+x^5\right ) \sqrt [4]{x+x^6}} \, dx=\int \frac {\left (2\,x^5-3\right )\,\left (x^5-x^3+1\right )}{x^3\,{\left (x^6+x\right )}^{1/4}\,\left (x^5+x^3+1\right )} \,d x \]

input
int(((2*x^5 - 3)*(x^5 - x^3 + 1))/(x^3*(x + x^6)^(1/4)*(x^3 + x^5 + 1)),x)
 
output
int(((2*x^5 - 3)*(x^5 - x^3 + 1))/(x^3*(x + x^6)^(1/4)*(x^3 + x^5 + 1)), x 
)