3.16.16 \(\int \frac {\sqrt [4]{-1+x^4} (2+x^4)}{x^2 (2+2 x^4+x^8)} \, dx\) [1516]

3.16.16.1 Optimal result
3.16.16.2 Mathematica [A] (verified)
3.16.16.3 Rubi [C] (verified)
3.16.16.4 Maple [C] (warning: unable to verify)
3.16.16.5 Fricas [C] (verification not implemented)
3.16.16.6 Sympy [F(-1)]
3.16.16.7 Maxima [N/A]
3.16.16.8 Giac [C] (verification not implemented)
3.16.16.9 Mupad [N/A]

3.16.16.1 Optimal result

Integrand size = 30, antiderivative size = 105 \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=-\frac {\sqrt [4]{-1+x^4}}{x}+\frac {1}{8} \text {RootSum}\left [5-6 \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {-5 \log (x)+5 \log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right )+3 \log (x) \text {$\#$1}^4-3 \log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-3 \text {$\#$1}^3+2 \text {$\#$1}^7}\&\right ] \]

output
Unintegrable
 
3.16.16.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=-\frac {\sqrt [4]{-1+x^4}}{x}+\frac {1}{8} \text {RootSum}\left [5-6 \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {-5 \log (x)+5 \log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right )+3 \log (x) \text {$\#$1}^4-3 \log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-3 \text {$\#$1}^3+2 \text {$\#$1}^7}\&\right ] \]

input
Integrate[((-1 + x^4)^(1/4)*(2 + x^4))/(x^2*(2 + 2*x^4 + x^8)),x]
 
output
-((-1 + x^4)^(1/4)/x) + RootSum[5 - 6*#1^4 + 2*#1^8 & , (-5*Log[x] + 5*Log 
[(-1 + x^4)^(1/4) - x*#1] + 3*Log[x]*#1^4 - 3*Log[(-1 + x^4)^(1/4) - x*#1] 
*#1^4)/(-3*#1^3 + 2*#1^7) & ]/8
 
3.16.16.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.36 (sec) , antiderivative size = 295, normalized size of antiderivative = 2.81, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x^4-1} \left (x^4+2\right )}{x^2 \left (x^8+2 x^4+2\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {\sqrt [4]{x^4-1}}{x^2}+\frac {\left (-x^4-1\right ) \sqrt [4]{x^4-1} x^2}{x^8+2 x^4+2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (\frac {1}{12}+\frac {i}{12}\right ) \sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^4,\left (-\frac {1}{2}+\frac {i}{2}\right ) x^4\right )}{\sqrt [4]{1-x^4}}-\frac {\left (\frac {1}{12}-\frac {i}{12}\right ) \sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {1}{4},\frac {7}{4},\left (-\frac {1}{2}-\frac {i}{2}\right ) x^4,x^4\right )}{\sqrt [4]{1-x^4}}-\left (\frac {1}{4}+\frac {i}{2}\right ) \left (\frac {3}{5}-\frac {i}{5}\right )^{3/4} \arctan \left (\frac {x}{\sqrt [4]{\frac {3}{5}-\frac {i}{5}} \sqrt [4]{x^4-1}}\right )-\left (\frac {1}{4}-\frac {i}{2}\right ) \left (\frac {3}{5}+\frac {i}{5}\right )^{3/4} \arctan \left (\frac {x}{\sqrt [4]{\frac {3}{5}+\frac {i}{5}} \sqrt [4]{x^4-1}}\right )+\left (\frac {1}{4}+\frac {i}{2}\right ) \left (\frac {3}{5}-\frac {i}{5}\right )^{3/4} \text {arctanh}\left (\frac {x}{\sqrt [4]{\frac {3}{5}-\frac {i}{5}} \sqrt [4]{x^4-1}}\right )+\left (\frac {1}{4}-\frac {i}{2}\right ) \left (\frac {3}{5}+\frac {i}{5}\right )^{3/4} \text {arctanh}\left (\frac {x}{\sqrt [4]{\frac {3}{5}+\frac {i}{5}} \sqrt [4]{x^4-1}}\right )-\frac {\sqrt [4]{x^4-1}}{x}\)

input
Int[((-1 + x^4)^(1/4)*(2 + x^4))/(x^2*(2 + 2*x^4 + x^8)),x]
 
output
-((-1 + x^4)^(1/4)/x) - ((1/12 + I/12)*x^3*(-1 + x^4)^(1/4)*AppellF1[3/4, 
-1/4, 1, 7/4, x^4, (-1/2 + I/2)*x^4])/(1 - x^4)^(1/4) - ((1/12 - I/12)*x^3 
*(-1 + x^4)^(1/4)*AppellF1[3/4, 1, -1/4, 7/4, (-1/2 - I/2)*x^4, x^4])/(1 - 
 x^4)^(1/4) - (1/4 + I/2)*(3/5 - I/5)^(3/4)*ArcTan[x/((3/5 - I/5)^(1/4)*(- 
1 + x^4)^(1/4))] - (1/4 - I/2)*(3/5 + I/5)^(3/4)*ArcTan[x/((3/5 + I/5)^(1/ 
4)*(-1 + x^4)^(1/4))] + (1/4 + I/2)*(3/5 - I/5)^(3/4)*ArcTanh[x/((3/5 - I/ 
5)^(1/4)*(-1 + x^4)^(1/4))] + (1/4 - I/2)*(3/5 + I/5)^(3/4)*ArcTanh[x/((3/ 
5 + I/5)^(1/4)*(-1 + x^4)^(1/4))]
 

3.16.16.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.16.16.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 1.

Time = 13.19 (sec) , antiderivative size = 4181, normalized size of antiderivative = 39.82

\[\text {output too large to display}\]

input
int((x^4-1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4+2),x)
 
output
-(x^4-1)^(1/4)/x+(-8192*RootOf(33554432*_Z^8-24576*_Z^4+5)^5*ln(-(-16384*R 
ootOf(33554432*_Z^8-24576*_Z^4+5)^5*x^12+524288*(x^12-3*x^8+3*x^4-1)^(1/4) 
*RootOf(33554432*_Z^8-24576*_Z^4+5)^6*x^9+32768*RootOf(33554432*_Z^8-24576 
*_Z^4+5)^5*x^8-4*RootOf(33554432*_Z^8-24576*_Z^4+5)*x^12-1048576*(x^12-3*x 
^8+3*x^4-1)^(1/4)*RootOf(33554432*_Z^8-24576*_Z^4+5)^6*x^5-192*RootOf(3355 
4432*_Z^8-24576*_Z^4+5)^2*(x^12-3*x^8+3*x^4-1)^(1/4)*x^9+512*(x^12-3*x^8+3 
*x^4-1)^(1/2)*RootOf(33554432*_Z^8-24576*_Z^4+5)^3*x^6-12288*(x^12-3*x^8+3 
*x^4-1)^(3/4)*RootOf(33554432*_Z^8-24576*_Z^4+5)^4*x^3-16384*RootOf(335544 
32*_Z^8-24576*_Z^4+5)^5*x^4+12*RootOf(33554432*_Z^8-24576*_Z^4+5)*x^8+5242 
88*(x^12-3*x^8+3*x^4-1)^(1/4)*RootOf(33554432*_Z^8-24576*_Z^4+5)^6*x+384*R 
ootOf(33554432*_Z^8-24576*_Z^4+5)^2*(x^12-3*x^8+3*x^4-1)^(1/4)*x^5-512*(x^ 
12-3*x^8+3*x^4-1)^(1/2)*RootOf(33554432*_Z^8-24576*_Z^4+5)^3*x^2+5*(x^12-3 
*x^8+3*x^4-1)^(3/4)*x^3-12*RootOf(33554432*_Z^8-24576*_Z^4+5)*x^4-192*Root 
Of(33554432*_Z^8-24576*_Z^4+5)^2*(x^12-3*x^8+3*x^4-1)^(1/4)*x+4*RootOf(335 
54432*_Z^8-24576*_Z^4+5))/(4096*x^4*RootOf(33554432*_Z^8-24576*_Z^4+5)^4-x 
^4+1)/(8192*x*RootOf(33554432*_Z^8-24576*_Z^4+5)^4-3*x-1)^2/(1+x)^2/(-1+x) 
^2/(8192*x*RootOf(33554432*_Z^8-24576*_Z^4+5)^4-3*x+1)^2)+3*RootOf(3355443 
2*_Z^8-24576*_Z^4+5)*ln(-(-16384*RootOf(33554432*_Z^8-24576*_Z^4+5)^5*x^12 
+524288*(x^12-3*x^8+3*x^4-1)^(1/4)*RootOf(33554432*_Z^8-24576*_Z^4+5)^6*x^ 
9+32768*RootOf(33554432*_Z^8-24576*_Z^4+5)^5*x^8-4*RootOf(33554432*_Z^8...
 
3.16.16.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 5.76 (sec) , antiderivative size = 1027, normalized size of antiderivative = 9.78 \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=\text {Too large to display} \]

input
integrate((x^4-1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4+2),x, algorithm="fricas")
 
output
-1/32*(sqrt(2)*sqrt(-sqrt(-I + 3)*sqrt(2))*x*log(-(2*sqrt(-I + 3)*sqrt(2)* 
((63*I + 16)*x^7 + (47*I + 79)*x^3)*(x^4 - 1)^(1/4) + 4*(-(63*I + 16)*x^5 
- (47*I + 79)*x)*(x^4 - 1)^(3/4) + (2*sqrt(2)*((63*I + 16)*x^6 + (47*I + 7 
9)*x^2)*sqrt(x^4 - 1) - sqrt(-I + 3)*((104*I + 13)*x^8 + (50*I + 120)*x^4 
- 44*I - 38))*sqrt(-sqrt(-I + 3)*sqrt(2)))/(x^8 + 2*x^4 + 2)) - sqrt(2)*sq 
rt(-sqrt(-I + 3)*sqrt(2))*x*log(-(2*sqrt(-I + 3)*sqrt(2)*((63*I + 16)*x^7 
+ (47*I + 79)*x^3)*(x^4 - 1)^(1/4) + 4*(-(63*I + 16)*x^5 - (47*I + 79)*x)* 
(x^4 - 1)^(3/4) + (2*sqrt(2)*(-(63*I + 16)*x^6 - (47*I + 79)*x^2)*sqrt(x^4 
 - 1) - sqrt(-I + 3)*(-(104*I + 13)*x^8 - (50*I + 120)*x^4 + 44*I + 38))*s 
qrt(-sqrt(-I + 3)*sqrt(2)))/(x^8 + 2*x^4 + 2)) + sqrt(2)*sqrt(-sqrt(I + 3) 
*sqrt(2))*x*log(-(2*sqrt(I + 3)*sqrt(2)*(-(63*I - 16)*x^7 - (47*I - 79)*x^ 
3)*(x^4 - 1)^(1/4) + 4*((63*I - 16)*x^5 + (47*I - 79)*x)*(x^4 - 1)^(3/4) + 
 (2*sqrt(2)*(-(63*I - 16)*x^6 - (47*I - 79)*x^2)*sqrt(x^4 - 1) - sqrt(I + 
3)*(-(104*I - 13)*x^8 - (50*I - 120)*x^4 + 44*I - 38))*sqrt(-sqrt(I + 3)*s 
qrt(2)))/(x^8 + 2*x^4 + 2)) - sqrt(2)*sqrt(-sqrt(I + 3)*sqrt(2))*x*log(-(2 
*sqrt(I + 3)*sqrt(2)*(-(63*I - 16)*x^7 - (47*I - 79)*x^3)*(x^4 - 1)^(1/4) 
+ 4*((63*I - 16)*x^5 + (47*I - 79)*x)*(x^4 - 1)^(3/4) + (2*sqrt(2)*((63*I 
- 16)*x^6 + (47*I - 79)*x^2)*sqrt(x^4 - 1) - sqrt(I + 3)*((104*I - 13)*x^8 
 + (50*I - 120)*x^4 - 44*I + 38))*sqrt(-sqrt(I + 3)*sqrt(2)))/(x^8 + 2*x^4 
 + 2)) + sqrt(2)*sqrt(sqrt(I + 3)*sqrt(2))*x*log(-(2*sqrt(I + 3)*sqrt(2...
 
3.16.16.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=\text {Timed out} \]

input
integrate((x**4-1)**(1/4)*(x**4+2)/x**2/(x**8+2*x**4+2),x)
 
output
Timed out
 
3.16.16.7 Maxima [N/A]

Not integrable

Time = 0.32 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.29 \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=\int { \frac {{\left (x^{4} + 2\right )} {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{{\left (x^{8} + 2 \, x^{4} + 2\right )} x^{2}} \,d x } \]

input
integrate((x^4-1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4+2),x, algorithm="maxima")
 
output
integrate((x^4 + 2)*(x^4 - 1)^(1/4)/((x^8 + 2*x^4 + 2)*x^2), x)
 
3.16.16.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.36 (sec) , antiderivative size = 313, normalized size of antiderivative = 2.98 \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=\text {Too large to display} \]

input
integrate((x^4-1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4+2),x, algorithm="giac")
 
output
1/1152921504606846976*I*(8*I + 8)^(65/4)*(-I + 2)^(1/4)*log(I*(-4994214705 
84397634687058932589151711107044531621558329071816032093522024492452282368 
00000*I + 3457533257891983624756561841001819538433385218918480739727957145 
2628447849477465702400000)^(1/4) - (4427218577690292387840*I - 13281655733 
070877163520)*(x^4 - 1)^(1/4)/x) - 1/1152921504606846976*I*(8*I + 8)^(65/4 
)*(-I + 2)^(1/4)*log(I*(-4994214705843976346870589325891517111070445316215 
5832907181603209352202449245228236800000*I + 34575332578919836247565618410 
018195384333852189184807397279571452628447849477465702400000)^(1/4) + (442 
7218577690292387840*I - 13281655733070877163520)*(x^4 - 1)^(1/4)/x) - 1/42 
94967296*(8*I + 8)^(33/4)*(-I + 2)^(1/4)*log(-I*(-375722955104843938688593 
78145757959465275804876800000*I + 2601158919956611883228726179321704886057 
5557222400000)^(1/4) + (12369505812480*I + 4123168604160)*(x^4 - 1)^(1/4)/ 
x) + 1/4294967296*(8*I + 8)^(33/4)*(-I + 2)^(1/4)*log(-I*(-375722955104843 
93868859378145757959465275804876800000*I + 2601158919956611883228726179321 
7048860575557222400000)^(1/4) - (12369505812480*I + 4123168604160)*(x^4 - 
1)^(1/4)/x) - (x^4 - 1)^(1/4)/x - 1/32768*(8*I + 8)^(33/4)*(I + 2)^(1/4)*l 
og(I*(37572295510484393868859378145757959465275804876800000*I + 2601158919 
9566118832287261793217048860575557222400000)^(1/4) - (12369505812480*I - 4 
123168604160)*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sqrt(2) + 2) 
)^17 + 1/32768*(8*I + 8)^(33/4)*(I + 2)^(1/4)*log(I*(375722955104843938...
 
3.16.16.9 Mupad [N/A]

Not integrable

Time = 6.69 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.29 \[ \int \frac {\sqrt [4]{-1+x^4} \left (2+x^4\right )}{x^2 \left (2+2 x^4+x^8\right )} \, dx=\int \frac {{\left (x^4-1\right )}^{1/4}\,\left (x^4+2\right )}{x^2\,\left (x^8+2\,x^4+2\right )} \,d x \]

input
int(((x^4 - 1)^(1/4)*(x^4 + 2))/(x^2*(2*x^4 + x^8 + 2)),x)
 
output
int(((x^4 - 1)^(1/4)*(x^4 + 2))/(x^2*(2*x^4 + x^8 + 2)), x)