3.16.60 \(\int \frac {(-1-2 x+x^2) (-1+2 x+x^2)}{(1-x+2 x^2+x^3+x^4) \sqrt [3]{-x+x^5}} \, dx\) [1560]

3.16.60.1 Optimal result
3.16.60.2 Mathematica [F]
3.16.60.3 Rubi [F]
3.16.60.4 Maple [C] (verified)
3.16.60.5 Fricas [A] (verification not implemented)
3.16.60.6 Sympy [F]
3.16.60.7 Maxima [F]
3.16.60.8 Giac [F]
3.16.60.9 Mupad [F(-1)]

3.16.60.1 Optimal result

Integrand size = 46, antiderivative size = 107 \[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [3]{-x+x^5}}{-2-2 x^2+\sqrt [3]{-x+x^5}}\right )+\log \left (1+x^2+\sqrt [3]{-x+x^5}\right )-\frac {1}{2} \log \left (1+2 x^2+x^4+\left (-1-x^2\right ) \sqrt [3]{-x+x^5}+\left (-x+x^5\right )^{2/3}\right ) \]

output
3^(1/2)*arctan(3^(1/2)*(x^5-x)^(1/3)/(-2-2*x^2+(x^5-x)^(1/3)))+ln(1+x^2+(x 
^5-x)^(1/3))-1/2*ln(1+2*x^2+x^4+(-x^2-1)*(x^5-x)^(1/3)+(x^5-x)^(2/3))
 
3.16.60.2 Mathematica [F]

\[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=\int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx \]

input
Integrate[((-1 - 2*x + x^2)*(-1 + 2*x + x^2))/((1 - x + 2*x^2 + x^3 + x^4) 
*(-x + x^5)^(1/3)),x]
 
output
Integrate[((-1 - 2*x + x^2)*(-1 + 2*x + x^2))/((1 - x + 2*x^2 + x^3 + x^4) 
*(-x + x^5)^(1/3)), x]
 
3.16.60.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2-2 x-1\right ) \left (x^2+2 x-1\right )}{\left (x^4+x^3+2 x^2-x+1\right ) \sqrt [3]{x^5-x}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [3]{x} \sqrt [3]{x^4-1} \int \frac {\left (-x^2-2 x+1\right ) \left (-x^2+2 x+1\right )}{\sqrt [3]{x} \sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}dx}{\sqrt [3]{x^5-x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^4-1} \int \frac {\sqrt [3]{x} \left (-x^2-2 x+1\right ) \left (-x^2+2 x+1\right )}{\sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}d\sqrt [3]{x}}{\sqrt [3]{x^5-x}}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^4-1} \int \frac {\sqrt [3]{x} \left (x^4-6 x^2+1\right )}{\sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}d\sqrt [3]{x}}{\sqrt [3]{x^5-x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^4-1} \int \left (\frac {\left (-x^2-8 x+1\right ) x^{4/3}}{\sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}+\frac {\sqrt [3]{x}}{\sqrt [3]{x^4-1}}\right )d\sqrt [3]{x}}{\sqrt [3]{x^5-x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^4-1} \left (\int \frac {x^{4/3}}{\sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}d\sqrt [3]{x}-8 \int \frac {x^{7/3}}{\sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}d\sqrt [3]{x}-\int \frac {x^{10/3}}{\sqrt [3]{x^4-1} \left (x^4+x^3+2 x^2-x+1\right )}d\sqrt [3]{x}+\frac {x^{2/3} \sqrt [3]{1-x^4} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{3},\frac {7}{6},x^4\right )}{2 \sqrt [3]{x^4-1}}\right )}{\sqrt [3]{x^5-x}}\)

input
Int[((-1 - 2*x + x^2)*(-1 + 2*x + x^2))/((1 - x + 2*x^2 + x^3 + x^4)*(-x + 
 x^5)^(1/3)),x]
 
output
$Aborted
 

3.16.60.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.16.60.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.64 (sec) , antiderivative size = 782, normalized size of antiderivative = 7.31

method result size
trager \(\text {Expression too large to display}\) \(782\)

input
int((x^2-2*x-1)*(x^2+2*x-1)/(x^4+x^3+2*x^2-x+1)/(x^5-x)^(1/3),x,method=_RE 
TURNVERBOSE)
 
output
RootOf(_Z^2+_Z+1)*ln((-215628532170574272*RootOf(_Z^2+_Z+1)^2*x^4+89845221 
7377392800*RootOf(_Z^2+_Z+1)^2*x^3+812973192552633838*RootOf(_Z^2+_Z+1)*x^ 
4-2253715023870923763*(x^5-x)^(1/3)*RootOf(_Z^2+_Z+1)*x^2-4312570643411485 
44*RootOf(_Z^2+_Z+1)^2*x^2-326661081770322853*RootOf(_Z^2+_Z+1)*x^3-412140 
106595081815*x^4+2253715023870923763*RootOf(_Z^2+_Z+1)*(x^5-x)^(2/3)-83209 
0150298700567*(x^5-x)^(1/3)*x^2-898452217377392800*RootOf(_Z^2+_Z+1)^2*x+1 
625946385105267676*RootOf(_Z^2+_Z+1)*x^2-130149507345815310*x^3+8320901502 
98700567*(x^5-x)^(2/3)-2253715023870923763*RootOf(_Z^2+_Z+1)*(x^5-x)^(1/3) 
-215628532170574272*RootOf(_Z^2+_Z+1)^2+326661081770322853*RootOf(_Z^2+_Z+ 
1)*x-824280213190163630*x^2-832090150298700567*(x^5-x)^(1/3)+8129731925526 
33838*RootOf(_Z^2+_Z+1)+130149507345815310*x-412140106595081815)/(x^4+x^3+ 
2*x^2-x+1))-ln(-(215628532170574272*RootOf(_Z^2+_Z+1)^2*x^4-89845221737739 
2800*RootOf(_Z^2+_Z+1)^2*x^3+1244230256893782382*RootOf(_Z^2+_Z+1)*x^4-225 
3715023870923763*(x^5-x)^(1/3)*RootOf(_Z^2+_Z+1)*x^2+431257064341148544*Ro 
otOf(_Z^2+_Z+1)^2*x^2-2123565516525108453*RootOf(_Z^2+_Z+1)*x^3+1440741831 
318289925*x^4+2253715023870923763*RootOf(_Z^2+_Z+1)*(x^5-x)^(2/3)-14216248 
73572223196*(x^5-x)^(1/3)*x^2+898452217377392800*RootOf(_Z^2+_Z+1)^2*x+248 
8460513787564764*RootOf(_Z^2+_Z+1)*x^2-1094963791801900343*x^3+14216248735 
72223196*(x^5-x)^(2/3)-2253715023870923763*RootOf(_Z^2+_Z+1)*(x^5-x)^(1/3) 
+215628532170574272*RootOf(_Z^2+_Z+1)^2+2123565516525108453*RootOf(_Z^2...
 
3.16.60.5 Fricas [A] (verification not implemented)

Time = 1.23 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.44 \[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=-\sqrt {3} \arctan \left (\frac {541310 \, \sqrt {3} {\left (x^{5} - x\right )}^{\frac {1}{3}} {\left (x^{2} + 1\right )} + \sqrt {3} {\left (311575 \, x^{4} + 193471 \, x^{3} + 623150 \, x^{2} - 193471 \, x + 311575\right )} + 777518 \, \sqrt {3} {\left (x^{5} - x\right )}^{\frac {2}{3}}}{3 \, {\left (166375 \, x^{4} - 493039 \, x^{3} + 332750 \, x^{2} + 493039 \, x + 166375\right )}}\right ) + \frac {1}{2} \, \log \left (\frac {x^{4} + x^{3} + 2 \, x^{2} + 3 \, {\left (x^{5} - x\right )}^{\frac {1}{3}} {\left (x^{2} + 1\right )} - x + 3 \, {\left (x^{5} - x\right )}^{\frac {2}{3}} + 1}{x^{4} + x^{3} + 2 \, x^{2} - x + 1}\right ) \]

input
integrate((x^2-2*x-1)*(x^2+2*x-1)/(x^4+x^3+2*x^2-x+1)/(x^5-x)^(1/3),x, alg 
orithm="fricas")
 
output
-sqrt(3)*arctan(1/3*(541310*sqrt(3)*(x^5 - x)^(1/3)*(x^2 + 1) + sqrt(3)*(3 
11575*x^4 + 193471*x^3 + 623150*x^2 - 193471*x + 311575) + 777518*sqrt(3)* 
(x^5 - x)^(2/3))/(166375*x^4 - 493039*x^3 + 332750*x^2 + 493039*x + 166375 
)) + 1/2*log((x^4 + x^3 + 2*x^2 + 3*(x^5 - x)^(1/3)*(x^2 + 1) - x + 3*(x^5 
 - x)^(2/3) + 1)/(x^4 + x^3 + 2*x^2 - x + 1))
 
3.16.60.6 Sympy [F]

\[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=\int \frac {\left (x^{2} - 2 x - 1\right ) \left (x^{2} + 2 x - 1\right )}{\sqrt [3]{x \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )} \left (x^{4} + x^{3} + 2 x^{2} - x + 1\right )}\, dx \]

input
integrate((x**2-2*x-1)*(x**2+2*x-1)/(x**4+x**3+2*x**2-x+1)/(x**5-x)**(1/3) 
,x)
 
output
Integral((x**2 - 2*x - 1)*(x**2 + 2*x - 1)/((x*(x - 1)*(x + 1)*(x**2 + 1)) 
**(1/3)*(x**4 + x**3 + 2*x**2 - x + 1)), x)
 
3.16.60.7 Maxima [F]

\[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=\int { \frac {{\left (x^{2} + 2 \, x - 1\right )} {\left (x^{2} - 2 \, x - 1\right )}}{{\left (x^{5} - x\right )}^{\frac {1}{3}} {\left (x^{4} + x^{3} + 2 \, x^{2} - x + 1\right )}} \,d x } \]

input
integrate((x^2-2*x-1)*(x^2+2*x-1)/(x^4+x^3+2*x^2-x+1)/(x^5-x)^(1/3),x, alg 
orithm="maxima")
 
output
integrate((x^2 + 2*x - 1)*(x^2 - 2*x - 1)/((x^5 - x)^(1/3)*(x^4 + x^3 + 2* 
x^2 - x + 1)), x)
 
3.16.60.8 Giac [F]

\[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=\int { \frac {{\left (x^{2} + 2 \, x - 1\right )} {\left (x^{2} - 2 \, x - 1\right )}}{{\left (x^{5} - x\right )}^{\frac {1}{3}} {\left (x^{4} + x^{3} + 2 \, x^{2} - x + 1\right )}} \,d x } \]

input
integrate((x^2-2*x-1)*(x^2+2*x-1)/(x^4+x^3+2*x^2-x+1)/(x^5-x)^(1/3),x, alg 
orithm="giac")
 
output
integrate((x^2 + 2*x - 1)*(x^2 - 2*x - 1)/((x^5 - x)^(1/3)*(x^4 + x^3 + 2* 
x^2 - x + 1)), x)
 
3.16.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-1-2 x+x^2\right ) \left (-1+2 x+x^2\right )}{\left (1-x+2 x^2+x^3+x^4\right ) \sqrt [3]{-x+x^5}} \, dx=-\int \frac {\left (x^2+2\,x-1\right )\,\left (-x^2+2\,x+1\right )}{{\left (x^5-x\right )}^{1/3}\,\left (x^4+x^3+2\,x^2-x+1\right )} \,d x \]

input
int(-((2*x + x^2 - 1)*(2*x - x^2 + 1))/((x^5 - x)^(1/3)*(2*x^2 - x + x^3 + 
 x^4 + 1)),x)
 
output
-int(((2*x + x^2 - 1)*(2*x - x^2 + 1))/((x^5 - x)^(1/3)*(2*x^2 - x + x^3 + 
 x^4 + 1)), x)