3.16.69 \(\int \frac {x^6}{(b+a x^4)^{3/4} (-b^2+a^2 x^8)} \, dx\) [1569]

3.16.69.1 Optimal result
3.16.69.2 Mathematica [A] (verified)
3.16.69.3 Rubi [C] (verified)
3.16.69.4 Maple [A] (verified)
3.16.69.5 Fricas [F(-1)]
3.16.69.6 Sympy [F(-1)]
3.16.69.7 Maxima [F]
3.16.69.8 Giac [F]
3.16.69.9 Mupad [F(-1)]

3.16.69.1 Optimal result

Integrand size = 30, antiderivative size = 107 \[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=\frac {x^3}{6 a b \left (b+a x^4\right )^{3/4}}+\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{4\ 2^{3/4} a^{7/4} b}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{4\ 2^{3/4} a^{7/4} b} \]

output
1/6*x^3/a/b/(a*x^4+b)^(3/4)+1/8*arctan(2^(1/4)*a^(1/4)*x/(a*x^4+b)^(1/4))* 
2^(1/4)/a^(7/4)/b-1/8*arctanh(2^(1/4)*a^(1/4)*x/(a*x^4+b)^(1/4))*2^(1/4)/a 
^(7/4)/b
 
3.16.69.2 Mathematica [A] (verified)

Time = 0.71 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.90 \[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=\frac {\frac {4 a^{3/4} x^3}{\left (b+a x^4\right )^{3/4}}+3 \sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )-3 \sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{24 a^{7/4} b} \]

input
Integrate[x^6/((b + a*x^4)^(3/4)*(-b^2 + a^2*x^8)),x]
 
output
((4*a^(3/4)*x^3)/(b + a*x^4)^(3/4) + 3*2^(1/4)*ArcTan[(2^(1/4)*a^(1/4)*x)/ 
(b + a*x^4)^(1/4)] - 3*2^(1/4)*ArcTanh[(2^(1/4)*a^(1/4)*x)/(b + a*x^4)^(1/ 
4)])/(24*a^(7/4)*b)
 
3.16.69.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.25 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.52, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {1388, 1013, 25, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{\left (a x^4+b\right )^{3/4} \left (a^2 x^8-b^2\right )} \, dx\)

\(\Big \downarrow \) 1388

\(\displaystyle \int \frac {x^6}{\left (a x^4-b\right ) \left (a x^4+b\right )^{7/4}}dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {\left (\frac {a x^4}{b}+1\right )^{3/4} \int -\frac {x^6}{\left (b-a x^4\right ) \left (\frac {a x^4}{b}+1\right )^{7/4}}dx}{b \left (a x^4+b\right )^{3/4}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\left (\frac {a x^4}{b}+1\right )^{3/4} \int \frac {x^6}{\left (b-a x^4\right ) \left (\frac {a x^4}{b}+1\right )^{7/4}}dx}{b \left (a x^4+b\right )^{3/4}}\)

\(\Big \downarrow \) 1012

\(\displaystyle -\frac {x^7 \operatorname {Hypergeometric2F1}\left (1,\frac {7}{4},\frac {11}{4},\frac {2 a x^4}{a x^4+b}\right )}{7 b^2 \left (a x^4+b\right )^{3/4} \left (\frac {a x^4}{b}+1\right )}\)

input
Int[x^6/((b + a*x^4)^(3/4)*(-b^2 + a^2*x^8)),x]
 
output
-1/7*(x^7*Hypergeometric2F1[1, 7/4, 11/4, (2*a*x^4)/(b + a*x^4)])/(b^2*(b 
+ a*x^4)^(3/4)*(1 + (a*x^4)/b))
 

3.16.69.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 
3.16.69.4 Maple [A] (verified)

Time = 0.40 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.17

method result size
pseudoelliptic \(\frac {-6 \arctan \left (\frac {2^{\frac {3}{4}} \left (a \,x^{4}+b \right )^{\frac {1}{4}}}{2 a^{\frac {1}{4}} x}\right ) 2^{\frac {1}{4}} a^{\frac {1}{4}} \left (a \,x^{4}+b \right )^{\frac {3}{4}}-3 \ln \left (\frac {-x 2^{\frac {1}{4}} a^{\frac {1}{4}}-\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{x 2^{\frac {1}{4}} a^{\frac {1}{4}}-\left (a \,x^{4}+b \right )^{\frac {1}{4}}}\right ) 2^{\frac {1}{4}} a^{\frac {1}{4}} \left (a \,x^{4}+b \right )^{\frac {3}{4}}+8 a \,x^{3}}{48 a^{2} \left (a \,x^{4}+b \right )^{\frac {3}{4}} b}\) \(125\)

input
int(x^6/(a*x^4+b)^(3/4)/(a^2*x^8-b^2),x,method=_RETURNVERBOSE)
 
output
1/48*(-6*arctan(1/2*2^(3/4)/a^(1/4)/x*(a*x^4+b)^(1/4))*2^(1/4)*a^(1/4)*(a* 
x^4+b)^(3/4)-3*ln((-x*2^(1/4)*a^(1/4)-(a*x^4+b)^(1/4))/(x*2^(1/4)*a^(1/4)- 
(a*x^4+b)^(1/4)))*2^(1/4)*a^(1/4)*(a*x^4+b)^(3/4)+8*a*x^3)/a^2/(a*x^4+b)^( 
3/4)/b
 
3.16.69.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=\text {Timed out} \]

input
integrate(x^6/(a*x^4+b)^(3/4)/(a^2*x^8-b^2),x, algorithm="fricas")
 
output
Timed out
 
3.16.69.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=\text {Timed out} \]

input
integrate(x**6/(a*x**4+b)**(3/4)/(a**2*x**8-b**2),x)
 
output
Timed out
 
3.16.69.7 Maxima [F]

\[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=\int { \frac {x^{6}}{{\left (a^{2} x^{8} - b^{2}\right )} {\left (a x^{4} + b\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^6/(a*x^4+b)^(3/4)/(a^2*x^8-b^2),x, algorithm="maxima")
 
output
integrate(x^6/((a^2*x^8 - b^2)*(a*x^4 + b)^(3/4)), x)
 
3.16.69.8 Giac [F]

\[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=\int { \frac {x^{6}}{{\left (a^{2} x^{8} - b^{2}\right )} {\left (a x^{4} + b\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^6/(a*x^4+b)^(3/4)/(a^2*x^8-b^2),x, algorithm="giac")
 
output
integrate(x^6/((a^2*x^8 - b^2)*(a*x^4 + b)^(3/4)), x)
 
3.16.69.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (b+a x^4\right )^{3/4} \left (-b^2+a^2 x^8\right )} \, dx=-\int \frac {x^6}{\left (b^2-a^2\,x^8\right )\,{\left (a\,x^4+b\right )}^{3/4}} \,d x \]

input
int(-x^6/((b^2 - a^2*x^8)*(b + a*x^4)^(3/4)),x)
 
output
-int(x^6/((b^2 - a^2*x^8)*(b + a*x^4)^(3/4)), x)