3.18.1 \(\int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx\) [1701]

3.18.1.1 Optimal result
3.18.1.2 Mathematica [A] (verified)
3.18.1.3 Rubi [B] (verified)
3.18.1.4 Maple [B] (verified)
3.18.1.5 Fricas [C] (verification not implemented)
3.18.1.6 Sympy [F]
3.18.1.7 Maxima [F]
3.18.1.8 Giac [A] (verification not implemented)
3.18.1.9 Mupad [F(-1)]

3.18.1.1 Optimal result

Integrand size = 20, antiderivative size = 114 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\frac {1}{96} \left (101+52 x+32 x^2\right ) \sqrt [4]{x^3+x^4}-\frac {155}{64} \arctan \left (\frac {x}{\sqrt [4]{x^3+x^4}}\right )+2 \sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^4}}\right )+\frac {155}{64} \text {arctanh}\left (\frac {x}{\sqrt [4]{x^3+x^4}}\right )-2 \sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^4}}\right ) \]

output
1/96*(32*x^2+52*x+101)*(x^4+x^3)^(1/4)-155/64*arctan(x/(x^4+x^3)^(1/4))+2* 
2^(1/4)*arctan(2^(1/4)*x/(x^4+x^3)^(1/4))+155/64*arctanh(x/(x^4+x^3)^(1/4) 
)-2*2^(1/4)*arctanh(2^(1/4)*x/(x^4+x^3)^(1/4))
 
3.18.1.2 Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.30 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\frac {x^{9/4} (1+x)^{3/4} \left (202 x^{3/4} \sqrt [4]{1+x}+104 x^{7/4} \sqrt [4]{1+x}+64 x^{11/4} \sqrt [4]{1+x}-465 \arctan \left (\sqrt [4]{\frac {x}{1+x}}\right )+384 \sqrt [4]{2} \arctan \left (\sqrt [4]{2} \sqrt [4]{\frac {x}{1+x}}\right )+465 \text {arctanh}\left (\sqrt [4]{\frac {x}{1+x}}\right )-384 \sqrt [4]{2} \text {arctanh}\left (\sqrt [4]{2} \sqrt [4]{\frac {x}{1+x}}\right )\right )}{192 \left (x^3 (1+x)\right )^{3/4}} \]

input
Integrate[(x^2*(x^3 + x^4)^(1/4))/(-1 + x),x]
 
output
(x^(9/4)*(1 + x)^(3/4)*(202*x^(3/4)*(1 + x)^(1/4) + 104*x^(7/4)*(1 + x)^(1 
/4) + 64*x^(11/4)*(1 + x)^(1/4) - 465*ArcTan[(x/(1 + x))^(1/4)] + 384*2^(1 
/4)*ArcTan[2^(1/4)*(x/(1 + x))^(1/4)] + 465*ArcTanh[(x/(1 + x))^(1/4)] - 3 
84*2^(1/4)*ArcTanh[2^(1/4)*(x/(1 + x))^(1/4)]))/(192*(x^3*(1 + x))^(3/4))
 
3.18.1.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(261\) vs. \(2(114)=228\).

Time = 0.42 (sec) , antiderivative size = 261, normalized size of antiderivative = 2.29, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.050, Rules used = {1948, 25, 112, 27, 173, 105, 105, 104, 827, 216, 219, 1194, 27, 87, 57, 60, 73, 854, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \sqrt [4]{x^4+x^3}}{x-1} \, dx\)

\(\Big \downarrow \) 1948

\(\displaystyle \frac {\sqrt [4]{x^4+x^3} \int -\frac {x^{11/4} \sqrt [4]{x+1}}{1-x}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \int \frac {x^{11/4} \sqrt [4]{x+1}}{1-x}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 112

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{3} \int \frac {x^{7/4} (13 x+11)}{4 (1-x) (x+1)^{3/4}}dx-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \int \frac {x^{7/4} (13 x+11)}{(1-x) (x+1)^{3/4}}dx-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 173

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \int \frac {x^{7/4}}{(1-x) (x+1)^{11/4}}dx-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \left (\frac {1}{2} \int \frac {x^{3/4}}{(1-x) (x+1)^{7/4}}dx-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{(1-x) \sqrt [4]{x} (x+1)^{3/4}}dx-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \left (\frac {1}{2} \left (2 \int \frac {\sqrt {x}}{\sqrt {x+1} \left (1-\frac {2 x}{x+1}\right )}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \left (\frac {1}{2} \left (2 \left (\frac {\int \frac {1}{1-\frac {\sqrt {2} \sqrt {x}}{\sqrt {x+1}}}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}-\frac {\int \frac {1}{\frac {\sqrt {2} \sqrt {x}}{\sqrt {x+1}}+1}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \left (\frac {1}{2} \left (2 \left (\frac {\int \frac {1}{1-\frac {\sqrt {2} \sqrt {x}}{\sqrt {x+1}}}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\int \frac {x^{7/4} \left (13 x^2+50 x+85\right )}{(x+1)^{11/4}}dx\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 1194

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {1}{2} \int \frac {5 x^{7/4} (41 x+136)}{4 (x+1)^{11/4}}dx+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \int \frac {x^{7/4} (41 x+136)}{(x+1)^{11/4}}dx+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 87

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \int \frac {x^{7/4}}{(x+1)^{7/4}}dx\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 57

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \int \frac {x^{3/4}}{(x+1)^{3/4}}dx-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \left (x^{3/4} \sqrt [4]{x+1}-\frac {3}{4} \int \frac {1}{\sqrt [4]{x} (x+1)^{3/4}}dx\right )-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \left (x^{3/4} \sqrt [4]{x+1}-3 \int \frac {\sqrt {x}}{(x+1)^{3/4}}d\sqrt [4]{x}\right )-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 854

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \left (x^{3/4} \sqrt [4]{x+1}-3 \int \frac {\sqrt {x}}{1-x}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \left (x^{3/4} \sqrt [4]{x+1}-3 \left (\frac {1}{2} \int \frac {1}{1-\sqrt {x}}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}-\frac {1}{2} \int \frac {1}{\sqrt {x}+1}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )\right )-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \left (x^{3/4} \sqrt [4]{x+1}-3 \left (\frac {1}{2} \int \frac {1}{1-\sqrt {x}}d\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )\right )\right )-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \left (\frac {1}{12} \left (-\frac {5}{8} \left (\frac {380 x^{11/4}}{7 (x+1)^{7/4}}-\frac {93}{7} \left (\frac {7}{3} \left (x^{3/4} \sqrt [4]{x+1}-3 \left (\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )\right )\right )-\frac {4 x^{7/4}}{3 (x+1)^{3/4}}\right )\right )+96 \left (\frac {1}{2} \left (2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2\ 2^{3/4}}\right )-\frac {2 x^{3/4}}{3 (x+1)^{3/4}}\right )-\frac {2 x^{7/4}}{7 (x+1)^{7/4}}\right )-\frac {13 x^{15/4}}{2 (x+1)^{7/4}}\right )-\frac {1}{3} x^{11/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

input
Int[(x^2*(x^3 + x^4)^(1/4))/(-1 + x),x]
 
output
-(((x^3 + x^4)^(1/4)*(-1/3*(x^(11/4)*(1 + x)^(1/4)) + ((-13*x^(15/4))/(2*( 
1 + x)^(7/4)) - (5*((380*x^(11/4))/(7*(1 + x)^(7/4)) - (93*((-4*x^(7/4))/( 
3*(1 + x)^(3/4)) + (7*(x^(3/4)*(1 + x)^(1/4) - 3*(-1/2*ArcTan[x^(1/4)/(1 + 
 x)^(1/4)] + ArcTanh[x^(1/4)/(1 + x)^(1/4)]/2)))/3))/7))/8 + 96*((-2*x^(7/ 
4))/(7*(1 + x)^(7/4)) + ((-2*x^(3/4))/(3*(1 + x)^(3/4)) + 2*(-1/2*ArcTan[( 
2^(1/4)*x^(1/4))/(1 + x)^(1/4)]/2^(3/4) + ArcTanh[(2^(1/4)*x^(1/4))/(1 + x 
)^(1/4)]/(2*2^(3/4))))/2))/12))/(x^(3/4)*(1 + x)^(1/4)))
 

3.18.1.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 57
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] & 
& GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m 
+ n + 2, 0] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c 
, d, m, n, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 112
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^m*(c + d*x)^n*((e + f*x)^(p + 1)/(f*(m + n + 
p + 1))), x] - Simp[1/(f*(m + n + p + 1))   Int[(a + b*x)^(m - 1)*(c + d*x) 
^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a 
*f) + b*n*(d*e - c*f))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && 
GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (IntegersQ[2*m, 2*n, 2*p 
] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))
 

rule 173
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((g_.) + (h_.)*(x_ 
)))/((e_.) + (f_.)*(x_)), x_] :> Simp[(f*g - e*h)*((c*f - d*e)^(m + n + 1)/ 
f^(m + n + 2))   Int[(a + b*x)^m/((c + d*x)^(m + 1)*(e + f*x)), x], x] + Si 
mp[1/f^(m + n + 2)   Int[((a + b*x)^m/(c + d*x)^(m + 1))*ExpandToSum[(f^(m 
+ n + 2)*(c + d*x)^(m + n + 1)*(g + h*x) - (f*g - e*h)*(c*f - d*e)^(m + n + 
 1))/(e + f*x), x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[m 
+ n + 1, 0] && (LtQ[m, 0] || SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1194
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
 + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p*(d + e*x)^(m + 2*p)*((f + g*x 
)^(n + 1)/(g*e^(2*p)*(m + n + 2*p + 1))), x] + Simp[1/(g*e^(2*p)*(m + n + 2 
*p + 1))   Int[(d + e*x)^m*(f + g*x)^n*ExpandToSum[g*(m + n + 2*p + 1)*(e^( 
2*p)*(a + b*x + c*x^2)^p - c^p*(d + e*x)^(2*p)) - c^p*(e*f - d*g)*(m + 2*p) 
*(d + e*x)^(2*p - 1), x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ 
[p, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && NeQ[m + n + 2*p + 1, 0]
 

rule 1948
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[e^IntPart[m]*(e*x)^FracPart[m]*( 
(a*x^j + b*x^(j + n))^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x 
^n)^FracPart[p]))   Int[x^(m + j*p)*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; 
FreeQ[{a, b, c, d, e, j, m, n, p, q}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] 
 && NeQ[b*c - a*d, 0] &&  !(EqQ[n, 1] && EqQ[j, 1])
 
3.18.1.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(207\) vs. \(2(90)=180\).

Time = 4.78 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.82

method result size
pseudoelliptic \(-\frac {x^{9} \left (-128 x^{2} \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}+384 \ln \left (\frac {-2^{\frac {1}{4}} x -\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{2^{\frac {1}{4}} x -\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}\right ) 2^{\frac {1}{4}}+768 \arctan \left (\frac {2^{\frac {3}{4}} \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{2 x}\right ) 2^{\frac {1}{4}}-208 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}} x -465 \ln \left (\frac {x +\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )+465 \ln \left (\frac {\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}-x}{x}\right )-930 \arctan \left (\frac {\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )-404 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}\right )}{384 {\left (x +\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}\right )}^{3} {\left (\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}-x \right )}^{3} \left (x^{2}+\sqrt {x^{3} \left (1+x \right )}\right )^{3}}\) \(208\)
trager \(\left (\frac {1}{3} x^{2}+\frac {13}{24} x +\frac {101}{96}\right ) \left (x^{4}+x^{3}\right )^{\frac {1}{4}}-\frac {155 \ln \left (\frac {2 \left (x^{4}+x^{3}\right )^{\frac {3}{4}}-2 \sqrt {x^{4}+x^{3}}\, x +2 x^{2} \left (x^{4}+x^{3}\right )^{\frac {1}{4}}-2 x^{3}-x^{2}}{x^{2}}\right )}{128}-\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x^{3}+4 \left (x^{4}+x^{3}\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x^{2}+4 \sqrt {x^{4}+x^{3}}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right ) x +4 \left (x^{4}+x^{3}\right )^{\frac {3}{4}}}{\left (-1+x \right ) x^{2}}\right )+\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x^{3}-4 \left (x^{4}+x^{3}\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} x^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) x^{2}-4 \sqrt {x^{4}+x^{3}}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) x +4 \left (x^{4}+x^{3}\right )^{\frac {3}{4}}}{\left (-1+x \right ) x^{2}}\right )-\frac {155 \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \ln \left (\frac {-2 \sqrt {x^{4}+x^{3}}\, \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x +2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x^{3}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+\operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{2}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{4}-2\right )^{3} x^{2}+4 \left (x^{4}+x^{3}\right )^{\frac {3}{4}}-4 x^{2} \left (x^{4}+x^{3}\right )^{\frac {1}{4}}}{x^{2}}\right )}{256}\) \(444\)
risch \(\text {Expression too large to display}\) \(876\)

input
int(x^2*(x^4+x^3)^(1/4)/(-1+x),x,method=_RETURNVERBOSE)
 
output
-1/384*x^9*(-128*x^2*(x^3*(1+x))^(1/4)+384*ln((-2^(1/4)*x-(x^3*(1+x))^(1/4 
))/(2^(1/4)*x-(x^3*(1+x))^(1/4)))*2^(1/4)+768*arctan(1/2*2^(3/4)/x*(x^3*(1 
+x))^(1/4))*2^(1/4)-208*(x^3*(1+x))^(1/4)*x-465*ln((x+(x^3*(1+x))^(1/4))/x 
)+465*ln(((x^3*(1+x))^(1/4)-x)/x)-930*arctan((x^3*(1+x))^(1/4)/x)-404*(x^3 
*(1+x))^(1/4))/(x+(x^3*(1+x))^(1/4))^3/((x^3*(1+x))^(1/4)-x)^3/(x^2+(x^3*( 
1+x))^(1/2))^3
 
3.18.1.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.59 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\frac {1}{96} \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}} {\left (32 \, x^{2} + 52 \, x + 101\right )} - 2^{\frac {1}{4}} \log \left (\frac {2^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + 2^{\frac {1}{4}} \log \left (-\frac {2^{\frac {1}{4}} x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - i \cdot 2^{\frac {1}{4}} \log \left (\frac {i \cdot 2^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + i \cdot 2^{\frac {1}{4}} \log \left (\frac {-i \cdot 2^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {155}{64} \, \arctan \left (\frac {{\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {155}{128} \, \log \left (\frac {x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {155}{128} \, \log \left (-\frac {x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) \]

input
integrate(x^2*(x^4+x^3)^(1/4)/(-1+x),x, algorithm="fricas")
 
output
1/96*(x^4 + x^3)^(1/4)*(32*x^2 + 52*x + 101) - 2^(1/4)*log((2^(1/4)*x + (x 
^4 + x^3)^(1/4))/x) + 2^(1/4)*log(-(2^(1/4)*x - (x^4 + x^3)^(1/4))/x) - I* 
2^(1/4)*log((I*2^(1/4)*x + (x^4 + x^3)^(1/4))/x) + I*2^(1/4)*log((-I*2^(1/ 
4)*x + (x^4 + x^3)^(1/4))/x) + 155/64*arctan((x^4 + x^3)^(1/4)/x) + 155/12 
8*log((x + (x^4 + x^3)^(1/4))/x) - 155/128*log(-(x - (x^4 + x^3)^(1/4))/x)
 
3.18.1.6 Sympy [F]

\[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\int \frac {x^{2} \sqrt [4]{x^{3} \left (x + 1\right )}}{x - 1}\, dx \]

input
integrate(x**2*(x**4+x**3)**(1/4)/(-1+x),x)
 
output
Integral(x**2*(x**3*(x + 1))**(1/4)/(x - 1), x)
 
3.18.1.7 Maxima [F]

\[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\int { \frac {{\left (x^{4} + x^{3}\right )}^{\frac {1}{4}} x^{2}}{x - 1} \,d x } \]

input
integrate(x^2*(x^4+x^3)^(1/4)/(-1+x),x, algorithm="maxima")
 
output
integrate((x^4 + x^3)^(1/4)*x^2/(x - 1), x)
 
3.18.1.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.08 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\frac {1}{96} \, {\left (101 \, {\left (\frac {1}{x} + 1\right )}^{\frac {9}{4}} - 150 \, {\left (\frac {1}{x} + 1\right )}^{\frac {5}{4}} + 81 \, {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right )} x^{3} - 2 \cdot 2^{\frac {1}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) - 2^{\frac {1}{4}} \log \left (2^{\frac {1}{4}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) + 2^{\frac {1}{4}} \log \left ({\left | -2^{\frac {1}{4}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} \right |}\right ) + \frac {155}{64} \, \arctan \left ({\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) + \frac {155}{128} \, \log \left ({\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} + 1\right ) - \frac {155}{128} \, \log \left ({\left | {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} - 1 \right |}\right ) \]

input
integrate(x^2*(x^4+x^3)^(1/4)/(-1+x),x, algorithm="giac")
 
output
1/96*(101*(1/x + 1)^(9/4) - 150*(1/x + 1)^(5/4) + 81*(1/x + 1)^(1/4))*x^3 
- 2*2^(1/4)*arctan(1/2*2^(3/4)*(1/x + 1)^(1/4)) - 2^(1/4)*log(2^(1/4) + (1 
/x + 1)^(1/4)) + 2^(1/4)*log(abs(-2^(1/4) + (1/x + 1)^(1/4))) + 155/64*arc 
tan((1/x + 1)^(1/4)) + 155/128*log((1/x + 1)^(1/4) + 1) - 155/128*log(abs( 
(1/x + 1)^(1/4) - 1))
 
3.18.1.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x} \, dx=\int \frac {x^2\,{\left (x^4+x^3\right )}^{1/4}}{x-1} \,d x \]

input
int((x^2*(x^3 + x^4)^(1/4))/(x - 1),x)
 
output
int((x^2*(x^3 + x^4)^(1/4))/(x - 1), x)