3.18.30 \(\int \frac {x}{(-b+a x^2) \sqrt {b x+a x^3}} \, dx\) [1730]

3.18.30.1 Optimal result
3.18.30.2 Mathematica [A] (verified)
3.18.30.3 Rubi [C] (verified)
3.18.30.4 Maple [A] (verified)
3.18.30.5 Fricas [C] (verification not implemented)
3.18.30.6 Sympy [F]
3.18.30.7 Maxima [F]
3.18.30.8 Giac [F]
3.18.30.9 Mupad [F(-1)]

3.18.30.1 Optimal result

Integrand size = 26, antiderivative size = 117 \[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {b x+a x^3}}{b+a x^2}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {b x+a x^3}}{b+a x^2}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}} \]

output
1/4*arctan(2^(1/2)*a^(1/4)*b^(1/4)*(a*x^3+b*x)^(1/2)/(a*x^2+b))*2^(1/2)/a^ 
(3/4)/b^(3/4)-1/4*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*(a*x^3+b*x)^(1/2)/(a*x^2 
+b))*2^(1/2)/a^(3/4)/b^(3/4)
 
3.18.30.2 Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.00 \[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=\frac {\sqrt {x} \sqrt {b+a x^2} \left (\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {b+a x^2}}\right )-\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {b+a x^2}}\right )\right )}{2 \sqrt {2} a^{3/4} b^{3/4} \sqrt {x \left (b+a x^2\right )}} \]

input
Integrate[x/((-b + a*x^2)*Sqrt[b*x + a*x^3]),x]
 
output
(Sqrt[x]*Sqrt[b + a*x^2]*(ArcTan[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/Sqrt[b 
+ a*x^2]] - ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/Sqrt[b + a*x^2]]))/( 
2*Sqrt[2]*a^(3/4)*b^(3/4)*Sqrt[x*(b + a*x^2)])
 
3.18.30.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.67 (sec) , antiderivative size = 332, normalized size of antiderivative = 2.84, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.346, Rules used = {1948, 25, 368, 993, 1535, 761, 2213, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (a x^2-b\right ) \sqrt {a x^3+b x}} \, dx\)

\(\Big \downarrow \) 1948

\(\displaystyle \frac {\sqrt {x} \sqrt {a x^2+b} \int -\frac {\sqrt {x}}{\left (b-a x^2\right ) \sqrt {a x^2+b}}dx}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {a x^2+b} \int \frac {\sqrt {x}}{\left (b-a x^2\right ) \sqrt {a x^2+b}}dx}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 368

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \int \frac {x}{\left (b-a x^2\right ) \sqrt {a x^2+b}}d\sqrt {x}}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 993

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \left (\frac {\int \frac {1}{\left (\sqrt {b}-\sqrt {a} x\right ) \sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {a}}-\frac {\int \frac {1}{\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {a}}\right )}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 1535

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \left (\frac {\frac {\int \frac {1}{\sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {a} x+\sqrt {b}}{\left (\sqrt {b}-\sqrt {a} x\right ) \sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {a}}-\frac {\frac {\int \frac {1}{\sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {b}-\sqrt {a} x}{\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {a}}\right )}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 761

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \left (\frac {\frac {\int \frac {\sqrt {a} x+\sqrt {b}}{\left (\sqrt {b}-\sqrt {a} x\right ) \sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}-\frac {\frac {\int \frac {\sqrt {b}-\sqrt {a} x}{\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {a x^2+b}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}\right )}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 2213

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \left (\frac {\frac {1}{2} \int \frac {1}{\sqrt {b}-2 \sqrt {a} b x}d\frac {\sqrt {x}}{\sqrt {a x^2+b}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}-\frac {\frac {1}{2} \int \frac {1}{2 \sqrt {a} b x+\sqrt {b}}d\frac {\sqrt {x}}{\sqrt {a x^2+b}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}\right )}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \left (\frac {\frac {1}{2} \int \frac {1}{\sqrt {b}-2 \sqrt {a} b x}d\frac {\sqrt {x}}{\sqrt {a x^2+b}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}-\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a x^2+b}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}\right )}{\sqrt {a x^3+b x}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a x^2+b} \left (\frac {\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a x^2+b}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}}{2 \sqrt {a}}-\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a x^2+b}}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\left (\sqrt {a} x+\sqrt {b}\right ) \sqrt {\frac {a x^2+b}{\left (\sqrt {a} x+\sqrt {b}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} b^{3/4} \sqrt {a x^2+b}}}{2 \sqrt {a}}\right )}{\sqrt {a x^3+b x}}\)

input
Int[x/((-b + a*x^2)*Sqrt[b*x + a*x^3]),x]
 
output
(-2*Sqrt[x]*Sqrt[b + a*x^2]*(-1/2*(ArcTan[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] 
)/Sqrt[b + a*x^2]]/(2*Sqrt[2]*a^(1/4)*b^(3/4)) + ((Sqrt[b] + Sqrt[a]*x)*Sq 
rt[(b + a*x^2)/(Sqrt[b] + Sqrt[a]*x)^2]*EllipticF[2*ArcTan[(a^(1/4)*Sqrt[x 
])/b^(1/4)], 1/2])/(4*a^(1/4)*b^(3/4)*Sqrt[b + a*x^2]))/Sqrt[a] + (ArcTanh 
[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/Sqrt[b + a*x^2]]/(2*Sqrt[2]*a^(1/4)*b^( 
3/4)) + ((Sqrt[b] + Sqrt[a]*x)*Sqrt[(b + a*x^2)/(Sqrt[b] + Sqrt[a]*x)^2]*E 
llipticF[2*ArcTan[(a^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(4*a^(1/4)*b^(3/4)*Sqr 
t[b + a*x^2]))/(2*Sqrt[a])))/Sqrt[b*x + a*x^3]
 

3.18.30.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1535
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
1/(2*d)   Int[1/Sqrt[a + c*x^4], x], x] + Simp[1/(2*d)   Int[(d - e*x^2)/(( 
d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 
+ a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]
 

rule 1948
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[e^IntPart[m]*(e*x)^FracPart[m]*( 
(a*x^j + b*x^(j + n))^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x 
^n)^FracPart[p]))   Int[x^(m + j*p)*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; 
FreeQ[{a, b, c, d, e, j, m, n, p, q}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] 
 && NeQ[b*c - a*d, 0] &&  !(EqQ[n, 1] && EqQ[j, 1])
 

rule 2213
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> Simp[A   Subst[Int[1/(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^ 
4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d 
 + A*e, 0]
 
3.18.30.4 Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.84

method result size
default \(-\frac {\sqrt {2}\, \left (a b \right )^{\frac {1}{4}} \left (\ln \left (\frac {-\sqrt {2}\, \left (a b \right )^{\frac {1}{4}} x -\sqrt {\left (a \,x^{2}+b \right ) x}}{\sqrt {2}\, \left (a b \right )^{\frac {1}{4}} x -\sqrt {\left (a \,x^{2}+b \right ) x}}\right )+2 \arctan \left (\frac {\sqrt {\left (a \,x^{2}+b \right ) x}\, \sqrt {2}}{2 x \left (a b \right )^{\frac {1}{4}}}\right )\right )}{8 a b}\) \(98\)
pseudoelliptic \(-\frac {\sqrt {2}\, \left (a b \right )^{\frac {1}{4}} \left (\ln \left (\frac {-\sqrt {2}\, \left (a b \right )^{\frac {1}{4}} x -\sqrt {\left (a \,x^{2}+b \right ) x}}{\sqrt {2}\, \left (a b \right )^{\frac {1}{4}} x -\sqrt {\left (a \,x^{2}+b \right ) x}}\right )+2 \arctan \left (\frac {\sqrt {\left (a \,x^{2}+b \right ) x}\, \sqrt {2}}{2 x \left (a b \right )^{\frac {1}{4}}}\right )\right )}{8 a b}\) \(98\)
elliptic \(\frac {\sqrt {-a b}\, \sqrt {\frac {x a}{\sqrt {-a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {-a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {-a b}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, -\frac {\sqrt {-a b}}{a \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{2 a^{2} \sqrt {a \,x^{3}+b x}\, \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}+\frac {\sqrt {-a b}\, \sqrt {\frac {x a}{\sqrt {-a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {-a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {-a b}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, -\frac {\sqrt {-a b}}{a \left (-\frac {\sqrt {-a b}}{a}+\frac {\sqrt {a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{2 a^{2} \sqrt {a \,x^{3}+b x}\, \left (-\frac {\sqrt {-a b}}{a}+\frac {\sqrt {a b}}{a}\right )}\) \(296\)

input
int(x/(a*x^2-b)/(a*x^3+b*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/8*2^(1/2)*(a*b)^(1/4)*(ln((-2^(1/2)*(a*b)^(1/4)*x-((a*x^2+b)*x)^(1/2))/ 
(2^(1/2)*(a*b)^(1/4)*x-((a*x^2+b)*x)^(1/2)))+2*arctan(1/2*((a*x^2+b)*x)^(1 
/2)/x*2^(1/2)/(a*b)^(1/4)))/a/b
 
3.18.30.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.34 (sec) , antiderivative size = 589, normalized size of antiderivative = 5.03 \[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=-\frac {1}{8} \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}} \log \left (\frac {a^{2} x^{4} + 6 \, a b x^{2} + b^{2} + 4 \, {\left (4 \, \left (\frac {1}{4}\right )^{\frac {3}{4}} a^{3} b^{3} x \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {3}{4}} + \left (\frac {1}{4}\right )^{\frac {1}{4}} {\left (a^{2} b x^{2} + a b^{2}\right )} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}}\right )} \sqrt {a x^{3} + b x} + 4 \, {\left (a^{3} b^{2} x^{3} + a^{2} b^{3} x\right )} \sqrt {\frac {1}{a^{3} b^{3}}}}{a^{2} x^{4} - 2 \, a b x^{2} + b^{2}}\right ) + \frac {1}{8} \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}} \log \left (\frac {a^{2} x^{4} + 6 \, a b x^{2} + b^{2} - 4 \, {\left (4 \, \left (\frac {1}{4}\right )^{\frac {3}{4}} a^{3} b^{3} x \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {3}{4}} + \left (\frac {1}{4}\right )^{\frac {1}{4}} {\left (a^{2} b x^{2} + a b^{2}\right )} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}}\right )} \sqrt {a x^{3} + b x} + 4 \, {\left (a^{3} b^{2} x^{3} + a^{2} b^{3} x\right )} \sqrt {\frac {1}{a^{3} b^{3}}}}{a^{2} x^{4} - 2 \, a b x^{2} + b^{2}}\right ) - \frac {1}{8} i \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}} \log \left (\frac {a^{2} x^{4} + 6 \, a b x^{2} + b^{2} - 4 \, {\left (4 i \, \left (\frac {1}{4}\right )^{\frac {3}{4}} a^{3} b^{3} x \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {3}{4}} + \left (\frac {1}{4}\right )^{\frac {1}{4}} {\left (-i \, a^{2} b x^{2} - i \, a b^{2}\right )} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}}\right )} \sqrt {a x^{3} + b x} - 4 \, {\left (a^{3} b^{2} x^{3} + a^{2} b^{3} x\right )} \sqrt {\frac {1}{a^{3} b^{3}}}}{a^{2} x^{4} - 2 \, a b x^{2} + b^{2}}\right ) + \frac {1}{8} i \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}} \log \left (\frac {a^{2} x^{4} + 6 \, a b x^{2} + b^{2} - 4 \, {\left (-4 i \, \left (\frac {1}{4}\right )^{\frac {3}{4}} a^{3} b^{3} x \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {3}{4}} + \left (\frac {1}{4}\right )^{\frac {1}{4}} {\left (i \, a^{2} b x^{2} + i \, a b^{2}\right )} \left (\frac {1}{a^{3} b^{3}}\right )^{\frac {1}{4}}\right )} \sqrt {a x^{3} + b x} - 4 \, {\left (a^{3} b^{2} x^{3} + a^{2} b^{3} x\right )} \sqrt {\frac {1}{a^{3} b^{3}}}}{a^{2} x^{4} - 2 \, a b x^{2} + b^{2}}\right ) \]

input
integrate(x/(a*x^2-b)/(a*x^3+b*x)^(1/2),x, algorithm="fricas")
 
output
-1/8*(1/4)^(1/4)*(1/(a^3*b^3))^(1/4)*log((a^2*x^4 + 6*a*b*x^2 + b^2 + 4*(4 
*(1/4)^(3/4)*a^3*b^3*x*(1/(a^3*b^3))^(3/4) + (1/4)^(1/4)*(a^2*b*x^2 + a*b^ 
2)*(1/(a^3*b^3))^(1/4))*sqrt(a*x^3 + b*x) + 4*(a^3*b^2*x^3 + a^2*b^3*x)*sq 
rt(1/(a^3*b^3)))/(a^2*x^4 - 2*a*b*x^2 + b^2)) + 1/8*(1/4)^(1/4)*(1/(a^3*b^ 
3))^(1/4)*log((a^2*x^4 + 6*a*b*x^2 + b^2 - 4*(4*(1/4)^(3/4)*a^3*b^3*x*(1/( 
a^3*b^3))^(3/4) + (1/4)^(1/4)*(a^2*b*x^2 + a*b^2)*(1/(a^3*b^3))^(1/4))*sqr 
t(a*x^3 + b*x) + 4*(a^3*b^2*x^3 + a^2*b^3*x)*sqrt(1/(a^3*b^3)))/(a^2*x^4 - 
 2*a*b*x^2 + b^2)) - 1/8*I*(1/4)^(1/4)*(1/(a^3*b^3))^(1/4)*log((a^2*x^4 + 
6*a*b*x^2 + b^2 - 4*(4*I*(1/4)^(3/4)*a^3*b^3*x*(1/(a^3*b^3))^(3/4) + (1/4) 
^(1/4)*(-I*a^2*b*x^2 - I*a*b^2)*(1/(a^3*b^3))^(1/4))*sqrt(a*x^3 + b*x) - 4 
*(a^3*b^2*x^3 + a^2*b^3*x)*sqrt(1/(a^3*b^3)))/(a^2*x^4 - 2*a*b*x^2 + b^2)) 
 + 1/8*I*(1/4)^(1/4)*(1/(a^3*b^3))^(1/4)*log((a^2*x^4 + 6*a*b*x^2 + b^2 - 
4*(-4*I*(1/4)^(3/4)*a^3*b^3*x*(1/(a^3*b^3))^(3/4) + (1/4)^(1/4)*(I*a^2*b*x 
^2 + I*a*b^2)*(1/(a^3*b^3))^(1/4))*sqrt(a*x^3 + b*x) - 4*(a^3*b^2*x^3 + a^ 
2*b^3*x)*sqrt(1/(a^3*b^3)))/(a^2*x^4 - 2*a*b*x^2 + b^2))
 
3.18.30.6 Sympy [F]

\[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=\int \frac {x}{\sqrt {x \left (a x^{2} + b\right )} \left (a x^{2} - b\right )}\, dx \]

input
integrate(x/(a*x**2-b)/(a*x**3+b*x)**(1/2),x)
 
output
Integral(x/(sqrt(x*(a*x**2 + b))*(a*x**2 - b)), x)
 
3.18.30.7 Maxima [F]

\[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=\int { \frac {x}{\sqrt {a x^{3} + b x} {\left (a x^{2} - b\right )}} \,d x } \]

input
integrate(x/(a*x^2-b)/(a*x^3+b*x)^(1/2),x, algorithm="maxima")
 
output
integrate(x/(sqrt(a*x^3 + b*x)*(a*x^2 - b)), x)
 
3.18.30.8 Giac [F]

\[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=\int { \frac {x}{\sqrt {a x^{3} + b x} {\left (a x^{2} - b\right )}} \,d x } \]

input
integrate(x/(a*x^2-b)/(a*x^3+b*x)^(1/2),x, algorithm="giac")
 
output
integrate(x/(sqrt(a*x^3 + b*x)*(a*x^2 - b)), x)
 
3.18.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (-b+a x^2\right ) \sqrt {b x+a x^3}} \, dx=\text {Hanged} \]

input
int(-x/((b*x + a*x^3)^(1/2)*(b - a*x^2)),x)
 
output
\text{Hanged}