3.18.49 \(\int \frac {x^4}{(1+x^4)^2 \sqrt [4]{x^2+x^4}} \, dx\) [1749]

3.18.49.1 Optimal result
3.18.49.2 Mathematica [A] (verified)
3.18.49.3 Rubi [F]
3.18.49.4 Maple [N/A] (verified)
3.18.49.5 Fricas [C] (verification not implemented)
3.18.49.6 Sympy [N/A]
3.18.49.7 Maxima [N/A]
3.18.49.8 Giac [C] (verification not implemented)
3.18.49.9 Mupad [N/A]

3.18.49.1 Optimal result

Integrand size = 22, antiderivative size = 118 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {\left (-1+x^2\right ) \left (x^2+x^4\right )^{3/4}}{8 x \left (1+x^4\right )}+\frac {1}{64} \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+2 \log \left (\sqrt [4]{x^2+x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{x^2+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}+\text {$\#$1}^5}\&\right ] \]

output
Unintegrable
 
3.18.49.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.17 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {16 x \left (-1+x^4\right )+\sqrt {x} \sqrt [4]{1+x^2} \left (1+x^4\right ) \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+4 \log \left (\sqrt [4]{1+x^2}-\sqrt {x} \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-2 \log \left (\sqrt [4]{1+x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}+\text {$\#$1}^5}\&\right ]}{128 \left (1+x^4\right ) \sqrt [4]{x^2+x^4}} \]

input
Integrate[x^4/((1 + x^4)^2*(x^2 + x^4)^(1/4)),x]
 
output
(16*x*(-1 + x^4) + Sqrt[x]*(1 + x^2)^(1/4)*(1 + x^4)*RootSum[2 - 2*#1^4 + 
#1^8 & , (-2*Log[x] + 4*Log[(1 + x^2)^(1/4) - Sqrt[x]*#1] + Log[x]*#1^4 - 
2*Log[(1 + x^2)^(1/4) - Sqrt[x]*#1]*#1^4)/(-#1 + #1^5) & ])/(128*(1 + x^4) 
*(x^2 + x^4)^(1/4))
 
3.18.49.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (x^4+1\right )^2 \sqrt [4]{x^4+x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^{7/2}}{\sqrt [4]{x^2+1} \left (x^4+1\right )^2}dx}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1593

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^4}{\sqrt [4]{x^2+1} \left (x^4+1\right )^2}d\sqrt {x}}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1888

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^4}{\sqrt [4]{x^2+1} \left (x^4+1\right )^2}d\sqrt {x}}{\sqrt [4]{x^4+x^2}}\)

input
Int[x^4/((1 + x^4)^2*(x^2 + x^4)^(1/4)),x]
 
output
$Aborted
 

3.18.49.3.1 Defintions of rubi rules used

rule 1593
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_ 
), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/f   Subst[Int[x^(k*(m + 1 
) - 1)*(d + e*(x^(2*k)/f))^q*(a + c*(x^(4*k)/f))^p, x], x, (f*x)^(1/k)], x] 
] /; FreeQ[{a, c, d, e, f, p, q}, x] && FractionQ[m] && IntegerQ[p]
 

rule 1888
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^ 
(n_))^(q_.), x_Symbol] :> Unintegrable[(f*x)^m*(d + e*x^n)^q*(a + c*x^(2*n) 
)^p, x] /; FreeQ[{a, c, d, e, f, m, n, p, q}, x] && EqQ[n2, 2*n]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.18.49.4 Maple [N/A] (verified)

Time = 73.74 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.28

method result size
pseudoelliptic \(\frac {-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{4}-2\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{5}-\textit {\_R}}\right ) x^{5}+8 \left (x^{2} \left (x^{2}+1\right )\right )^{\frac {3}{4}} x^{2}-8 \left (x^{2} \left (x^{2}+1\right )\right )^{\frac {3}{4}}-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{4}-2\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{5}-\textit {\_R}}\right ) x}{64 \left (x^{4}+1\right ) x}\) \(151\)
trager \(\text {Expression too large to display}\) \(2552\)
risch \(\text {Expression too large to display}\) \(2559\)

input
int(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/64*(-sum((_R^4-2)*ln((-_R*x+(x^2*(x^2+1))^(1/4))/x)/(_R^5-_R),_R=RootOf( 
_Z^8-2*_Z^4+2))*x^5+8*(x^2*(x^2+1))^(3/4)*x^2-8*(x^2*(x^2+1))^(3/4)-sum((_ 
R^4-2)*ln((-_R*x+(x^2*(x^2+1))^(1/4))/x)/(_R^5-_R),_R=RootOf(_Z^8-2*_Z^4+2 
))*x)/(x^4+1)/x
 
3.18.49.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 3.79 (sec) , antiderivative size = 1022, normalized size of antiderivative = 8.66 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\text {Too large to display} \]

input
integrate(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x, algorithm="fricas")
 
output
-1/128*((x^5 + x)*sqrt(sqrt(2)*sqrt(-I - 1))*log(-(2*sqrt(2)*sqrt(-I - 1)* 
((I + 7)*x^4 + (7*I - 1)*x^2)*(x^4 + x^2)^(1/4) + 4*(x^4 + x^2)^(3/4)*(-(3 
*I - 4)*x^2 + 4*I + 3) - (-(5*I - 15)*x^5 + (16*I + 12)*x^3 - 2*sqrt(2)*sq 
rt(-I - 1)*sqrt(x^4 + x^2)*(-(4*I + 3)*x^3 - (3*I - 4)*x) + (7*I - 1)*x)*s 
qrt(sqrt(2)*sqrt(-I - 1)))/(x^5 + x)) - (x^5 + x)*sqrt(sqrt(2)*sqrt(-I - 1 
))*log(-(2*sqrt(2)*sqrt(-I - 1)*((I + 7)*x^4 + (7*I - 1)*x^2)*(x^4 + x^2)^ 
(1/4) + 4*(x^4 + x^2)^(3/4)*(-(3*I - 4)*x^2 + 4*I + 3) - ((5*I - 15)*x^5 - 
 (16*I + 12)*x^3 - 2*sqrt(2)*sqrt(-I - 1)*sqrt(x^4 + x^2)*((4*I + 3)*x^3 + 
 (3*I - 4)*x) - (7*I - 1)*x)*sqrt(sqrt(2)*sqrt(-I - 1)))/(x^5 + x)) + (x^5 
 + x)*sqrt(sqrt(2)*sqrt(I - 1))*log(-(2*sqrt(2)*sqrt(I - 1)*(-(I - 7)*x^4 
- (7*I + 1)*x^2)*(x^4 + x^2)^(1/4) + 4*(x^4 + x^2)^(3/4)*((3*I + 4)*x^2 - 
4*I + 3) - ((5*I + 15)*x^5 - (16*I - 12)*x^3 - 2*sqrt(2)*sqrt(I - 1)*sqrt( 
x^4 + x^2)*((4*I - 3)*x^3 + (3*I + 4)*x) - (7*I + 1)*x)*sqrt(sqrt(2)*sqrt( 
I - 1)))/(x^5 + x)) - (x^5 + x)*sqrt(sqrt(2)*sqrt(I - 1))*log(-(2*sqrt(2)* 
sqrt(I - 1)*(-(I - 7)*x^4 - (7*I + 1)*x^2)*(x^4 + x^2)^(1/4) + 4*(x^4 + x^ 
2)^(3/4)*((3*I + 4)*x^2 - 4*I + 3) - (-(5*I + 15)*x^5 + (16*I - 12)*x^3 - 
2*sqrt(2)*sqrt(I - 1)*sqrt(x^4 + x^2)*(-(4*I - 3)*x^3 - (3*I + 4)*x) + (7* 
I + 1)*x)*sqrt(sqrt(2)*sqrt(I - 1)))/(x^5 + x)) + (x^5 + x)*sqrt(-sqrt(2)* 
sqrt(I - 1))*log(-(2*sqrt(2)*sqrt(I - 1)*(x^4 + x^2)^(1/4)*((I - 7)*x^4 + 
(7*I + 1)*x^2) + 4*(x^4 + x^2)^(3/4)*((3*I + 4)*x^2 - 4*I + 3) - ((5*I ...
 
3.18.49.6 Sympy [N/A]

Not integrable

Time = 1.16 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.19 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int \frac {x^{4}}{\sqrt [4]{x^{2} \left (x^{2} + 1\right )} \left (x^{4} + 1\right )^{2}}\, dx \]

input
integrate(x**4/(x**4+1)**2/(x**4+x**2)**(1/4),x)
 
output
Integral(x**4/((x**2*(x**2 + 1))**(1/4)*(x**4 + 1)**2), x)
 
3.18.49.7 Maxima [N/A]

Not integrable

Time = 0.32 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.68 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int { \frac {x^{4}}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}^{2}} \,d x } \]

input
integrate(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x, algorithm="maxima")
 
output
2/21*(4*x^5 + x^3 - 3*x)*x^(7/2)/((x^8 + 2*x^4 + 1)*(x^2 + 1)^(1/4)) - int 
egrate(16/21*(4*x^4 + x^2 - 3)*x^(7/2)/((x^12 + 3*x^8 + 3*x^4 + 1)*(x^2 + 
1)^(1/4)), x)
 
3.18.49.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.31 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.64 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=-\frac {1}{2} i \, \left (-\frac {1}{524288} i - \frac {1}{524288}\right )^{\frac {1}{4}} \log \left (\left (248661618204893321077691124073410420050228075398673858720231988446579748506266687766528 i + 248661618204893321077691124073410420050228075398673858720231988446579748506266687766528\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} + 4722366482869645213696 i\right ) + \frac {1}{2} i \, \left (-\frac {1}{524288} i - \frac {1}{524288}\right )^{\frac {1}{4}} \log \left (-\left (248661618204893321077691124073410420050228075398673858720231988446579748506266687766528 i + 248661618204893321077691124073410420050228075398673858720231988446579748506266687766528\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} + 4722366482869645213696 i\right ) + \frac {1}{2} i \, \left (\frac {1}{524288} i - \frac {1}{524288}\right )^{\frac {1}{4}} \log \left (\left (-248661618204893321077691124073410420050228075398673858720231988446579748506266687766528 i + 248661618204893321077691124073410420050228075398673858720231988446579748506266687766528\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} - 4722366482869645213696 i\right ) - \frac {1}{2} i \, \left (\frac {1}{524288} i - \frac {1}{524288}\right )^{\frac {1}{4}} \log \left (-\left (-248661618204893321077691124073410420050228075398673858720231988446579748506266687766528 i + 248661618204893321077691124073410420050228075398673858720231988446579748506266687766528\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} - 4722366482869645213696 i\right ) - \frac {1}{8} \, \left (-\frac {1}{2048} i - \frac {1}{2048}\right )^{\frac {1}{4}} \log \left (i \, \left (187072209578355573530071658587684226515959365500928 i + 187072209578355573530071658587684226515959365500928\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} - 4398046511104 i\right ) + \frac {1}{8} \, \left (-\frac {1}{2048} i - \frac {1}{2048}\right )^{\frac {1}{4}} \log \left (-i \, \left (187072209578355573530071658587684226515959365500928 i + 187072209578355573530071658587684226515959365500928\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} - 4398046511104 i\right ) + \frac {1}{8} \, \left (\frac {1}{2048} i - \frac {1}{2048}\right )^{\frac {1}{4}} \log \left (i \, \left (-187072209578355573530071658587684226515959365500928 i + 187072209578355573530071658587684226515959365500928\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} + 4398046511104 i\right ) - \frac {1}{8} \, \left (\frac {1}{2048} i - \frac {1}{2048}\right )^{\frac {1}{4}} \log \left (-i \, \left (-187072209578355573530071658587684226515959365500928 i + 187072209578355573530071658587684226515959365500928\right )^{\frac {1}{4}} {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {1}{4}} + 4398046511104 i\right ) - \frac {{\left (\frac {1}{x^{2}} + 1\right )}^{\frac {7}{4}} - 2 \, {\left (\frac {1}{x^{2}} + 1\right )}^{\frac {3}{4}}}{8 \, {\left ({\left (\frac {1}{x^{2}} + 1\right )}^{2} - \frac {2}{x^{2}}\right )}} \]

input
integrate(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x, algorithm="giac")
 
output
-1/2*I*(-1/524288*I - 1/524288)^(1/4)*log((2486616182048933210776911240734 
10420050228075398673858720231988446579748506266687766528*I + 2486616182048 
93321077691124073410420050228075398673858720231988446579748506266687766528 
)^(1/4)*(1/x^2 + 1)^(1/4) + 4722366482869645213696*I) + 1/2*I*(-1/524288*I 
 - 1/524288)^(1/4)*log(-(2486616182048933210776911240734104200502280753986 
73858720231988446579748506266687766528*I + 2486616182048933210776911240734 
10420050228075398673858720231988446579748506266687766528)^(1/4)*(1/x^2 + 1 
)^(1/4) + 4722366482869645213696*I) + 1/2*I*(1/524288*I - 1/524288)^(1/4)* 
log((-24866161820489332107769112407341042005022807539867385872023198844657 
9748506266687766528*I + 24866161820489332107769112407341042005022807539867 
3858720231988446579748506266687766528)^(1/4)*(1/x^2 + 1)^(1/4) - 472236648 
2869645213696*I) - 1/2*I*(1/524288*I - 1/524288)^(1/4)*log(-(-248661618204 
89332107769112407341042005022807539867385872023198844657974850626668776652 
8*I + 24866161820489332107769112407341042005022807539867385872023198844657 
9748506266687766528)^(1/4)*(1/x^2 + 1)^(1/4) - 4722366482869645213696*I) - 
 1/8*(-1/2048*I - 1/2048)^(1/4)*log(I*(18707220957835557353007165858768422 
6515959365500928*I + 187072209578355573530071658587684226515959365500928)^ 
(1/4)*(1/x^2 + 1)^(1/4) - 4398046511104*I) + 1/8*(-1/2048*I - 1/2048)^(1/4 
)*log(-I*(187072209578355573530071658587684226515959365500928*I + 18707220 
9578355573530071658587684226515959365500928)^(1/4)*(1/x^2 + 1)^(1/4) - ...
 
3.18.49.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.19 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int \frac {x^4}{{\left (x^4+x^2\right )}^{1/4}\,{\left (x^4+1\right )}^2} \,d x \]

input
int(x^4/((x^2 + x^4)^(1/4)*(x^4 + 1)^2),x)
 
output
int(x^4/((x^2 + x^4)^(1/4)*(x^4 + 1)^2), x)