3.18.79 \(\int \frac {\sqrt [3]{-x+x^3} (8-10 x^2+x^4)}{x^4 (4-2 x^2+x^4)} \, dx\) [1779]

3.18.79.1 Optimal result
3.18.79.2 Mathematica [A] (verified)
3.18.79.3 Rubi [C] (verified)
3.18.79.4 Maple [N/A] (verified)
3.18.79.5 Fricas [F(-2)]
3.18.79.6 Sympy [N/A]
3.18.79.7 Maxima [N/A]
3.18.79.8 Giac [F(-2)]
3.18.79.9 Mupad [N/A]

3.18.79.1 Optimal result

Integrand size = 37, antiderivative size = 120 \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=\frac {3 \left (-1+4 x^2\right ) \sqrt [3]{-x+x^3}}{4 x^3}-\frac {1}{8} \text {RootSum}\left [3-6 \text {$\#$1}^3+4 \text {$\#$1}^6\&,\frac {-9 \log (x)+9 \log \left (\sqrt [3]{-x+x^3}-x \text {$\#$1}\right )+4 \log (x) \text {$\#$1}^3-4 \log \left (\sqrt [3]{-x+x^3}-x \text {$\#$1}\right ) \text {$\#$1}^3}{-3 \text {$\#$1}^2+4 \text {$\#$1}^5}\&\right ] \]

output
Unintegrable
 
3.18.79.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.22 \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=-\frac {\sqrt [3]{x \left (-1+x^2\right )} \left (18 \left (1-4 x^2\right ) \sqrt [3]{-1+x^2}+x^{8/3} \text {RootSum}\left [3-6 \text {$\#$1}^3+4 \text {$\#$1}^6\&,\frac {-18 \log (x)+27 \log \left (\sqrt [3]{-1+x^2}-x^{2/3} \text {$\#$1}\right )+8 \log (x) \text {$\#$1}^3-12 \log \left (\sqrt [3]{-1+x^2}-x^{2/3} \text {$\#$1}\right ) \text {$\#$1}^3}{-3 \text {$\#$1}^2+4 \text {$\#$1}^5}\&\right ]\right )}{24 x^3 \sqrt [3]{-1+x^2}} \]

input
Integrate[((-x + x^3)^(1/3)*(8 - 10*x^2 + x^4))/(x^4*(4 - 2*x^2 + x^4)),x]
 
output
-1/24*((x*(-1 + x^2))^(1/3)*(18*(1 - 4*x^2)*(-1 + x^2)^(1/3) + x^(8/3)*Roo 
tSum[3 - 6*#1^3 + 4*#1^6 & , (-18*Log[x] + 27*Log[(-1 + x^2)^(1/3) - x^(2/ 
3)*#1] + 8*Log[x]*#1^3 - 12*Log[(-1 + x^2)^(1/3) - x^(2/3)*#1]*#1^3)/(-3*# 
1^2 + 4*#1^5) & ]))/(x^3*(-1 + x^2)^(1/3))
 
3.18.79.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 2.43 (sec) , antiderivative size = 1050, normalized size of antiderivative = 8.75, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {2467, 2035, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{x^3-x} \left (x^4-10 x^2+8\right )}{x^4 \left (x^4-2 x^2+4\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [3]{x^3-x} \int \frac {\sqrt [3]{x^2-1} \left (x^4-10 x^2+8\right )}{x^{11/3} \left (x^4-2 x^2+4\right )}dx}{\sqrt [3]{x} \sqrt [3]{x^2-1}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {3 \sqrt [3]{x^3-x} \int \frac {\sqrt [3]{x^2-1} \left (x^4-10 x^2+8\right )}{x^3 \left (x^4-2 x^2+4\right )}d\sqrt [3]{x}}{\sqrt [3]{x} \sqrt [3]{x^2-1}}\)

\(\Big \downarrow \) 7279

\(\displaystyle \frac {3 \sqrt [3]{x^3-x} \int \left (\frac {x \sqrt [3]{x^2-1} \left (3 x^2-8\right )}{2 \left (x^4-2 x^2+4\right )}-\frac {3 \sqrt [3]{x^2-1}}{2 x}+\frac {2 \sqrt [3]{x^2-1}}{x^3}\right )d\sqrt [3]{x}}{\sqrt [3]{x} \sqrt [3]{x^2-1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3 \sqrt [3]{x^3-x} \left (\frac {\left (x^2-1\right )^{4/3}}{4 x^{8/3}}+\frac {3 \sqrt [3]{x^2-1}}{4 x^{2/3}}-\frac {\left (1+i \sqrt {3}\right ) \arctan \left (\frac {\frac {2 \sqrt [6]{3} x^{2/3}}{\sqrt [3]{-i+\sqrt {3}} \sqrt [3]{x^2-1}}+1}{\sqrt {3}}\right )}{8 \sqrt [3]{3 \left (-i+\sqrt {3}\right )}}+\frac {\arctan \left (\frac {\frac {2 \sqrt [6]{3} x^{2/3}}{\sqrt [3]{-i+\sqrt {3}} \sqrt [3]{x^2-1}}+1}{\sqrt {3}}\right )}{2 \sqrt [3]{3 \left (-i+\sqrt {3}\right )}}+\frac {i \arctan \left (\frac {\frac {2 \sqrt [6]{3} x^{2/3}}{\sqrt [3]{-i+\sqrt {3}} \sqrt [3]{x^2-1}}+1}{\sqrt {3}}\right )}{3^{5/6} \sqrt [3]{-i+\sqrt {3}}}+\frac {\arctan \left (\frac {\frac {2 \sqrt [6]{3} x^{2/3}}{\sqrt [3]{i+\sqrt {3}} \sqrt [3]{x^2-1}}+1}{\sqrt {3}}\right )}{2 \sqrt [3]{3 \left (i+\sqrt {3}\right )}}+\frac {i \left (i+\sqrt {3}\right )^{2/3} \arctan \left (\frac {\frac {2 \sqrt [6]{3} x^{2/3}}{\sqrt [3]{i+\sqrt {3}} \sqrt [3]{x^2-1}}+1}{\sqrt {3}}\right )}{8 \sqrt [3]{3}}-\frac {i \arctan \left (\frac {\frac {2 \sqrt [6]{3} x^{2/3}}{\sqrt [3]{i+\sqrt {3}} \sqrt [3]{x^2-1}}+1}{\sqrt {3}}\right )}{3^{5/6} \sqrt [3]{i+\sqrt {3}}}+\frac {i \log \left (-x^2-i \sqrt {3}+1\right )}{6 \sqrt [3]{3 \left (i+\sqrt {3}\right )}}-\frac {i \left (i+\sqrt {3}\right )^{2/3} \log \left (-x^2-i \sqrt {3}+1\right )}{16\ 3^{5/6}}-\frac {\log \left (-x^2-i \sqrt {3}+1\right )}{4\ 3^{5/6} \sqrt [3]{i+\sqrt {3}}}-\frac {i \log \left (-x^2+i \sqrt {3}+1\right )}{6 \sqrt [3]{3 \left (-i+\sqrt {3}\right )}}+\frac {i \left (-i+\sqrt {3}\right )^{2/3} \log \left (-x^2+i \sqrt {3}+1\right )}{16\ 3^{5/6}}-\frac {\log \left (-x^2+i \sqrt {3}+1\right )}{4\ 3^{5/6} \sqrt [3]{-i+\sqrt {3}}}+\frac {i \log \left (\sqrt [6]{3} x^{2/3}-\sqrt [3]{-i+\sqrt {3}} \sqrt [3]{x^2-1}\right )}{2 \sqrt [3]{3 \left (-i+\sqrt {3}\right )}}-\frac {1}{16} i \sqrt [6]{3} \left (-i+\sqrt {3}\right )^{2/3} \log \left (\sqrt [6]{3} x^{2/3}-\sqrt [3]{-i+\sqrt {3}} \sqrt [3]{x^2-1}\right )+\frac {\sqrt [6]{3} \log \left (\sqrt [6]{3} x^{2/3}-\sqrt [3]{-i+\sqrt {3}} \sqrt [3]{x^2-1}\right )}{4 \sqrt [3]{-i+\sqrt {3}}}-\frac {i \log \left (\sqrt [6]{3} x^{2/3}-\sqrt [3]{i+\sqrt {3}} \sqrt [3]{x^2-1}\right )}{2 \sqrt [3]{3 \left (i+\sqrt {3}\right )}}+\frac {1}{16} i \sqrt [6]{3} \left (i+\sqrt {3}\right )^{2/3} \log \left (\sqrt [6]{3} x^{2/3}-\sqrt [3]{i+\sqrt {3}} \sqrt [3]{x^2-1}\right )+\frac {\sqrt [6]{3} \log \left (\sqrt [6]{3} x^{2/3}-\sqrt [3]{i+\sqrt {3}} \sqrt [3]{x^2-1}\right )}{4 \sqrt [3]{i+\sqrt {3}}}\right )}{\sqrt [3]{x} \sqrt [3]{x^2-1}}\)

input
Int[((-x + x^3)^(1/3)*(8 - 10*x^2 + x^4))/(x^4*(4 - 2*x^2 + x^4)),x]
 
output
(3*(-x + x^3)^(1/3)*((3*(-1 + x^2)^(1/3))/(4*x^(2/3)) + (-1 + x^2)^(4/3)/( 
4*x^(8/3)) + (I*ArcTan[(1 + (2*3^(1/6)*x^(2/3))/((-I + Sqrt[3])^(1/3)*(-1 
+ x^2)^(1/3)))/Sqrt[3]])/(3^(5/6)*(-I + Sqrt[3])^(1/3)) + ArcTan[(1 + (2*3 
^(1/6)*x^(2/3))/((-I + Sqrt[3])^(1/3)*(-1 + x^2)^(1/3)))/Sqrt[3]]/(2*(3*(- 
I + Sqrt[3]))^(1/3)) - ((1 + I*Sqrt[3])*ArcTan[(1 + (2*3^(1/6)*x^(2/3))/(( 
-I + Sqrt[3])^(1/3)*(-1 + x^2)^(1/3)))/Sqrt[3]])/(8*(3*(-I + Sqrt[3]))^(1/ 
3)) - (I*ArcTan[(1 + (2*3^(1/6)*x^(2/3))/((I + Sqrt[3])^(1/3)*(-1 + x^2)^( 
1/3)))/Sqrt[3]])/(3^(5/6)*(I + Sqrt[3])^(1/3)) + ((I/8)*(I + Sqrt[3])^(2/3 
)*ArcTan[(1 + (2*3^(1/6)*x^(2/3))/((I + Sqrt[3])^(1/3)*(-1 + x^2)^(1/3)))/ 
Sqrt[3]])/3^(1/3) + ArcTan[(1 + (2*3^(1/6)*x^(2/3))/((I + Sqrt[3])^(1/3)*( 
-1 + x^2)^(1/3)))/Sqrt[3]]/(2*(3*(I + Sqrt[3]))^(1/3)) - Log[1 - I*Sqrt[3] 
 - x^2]/(4*3^(5/6)*(I + Sqrt[3])^(1/3)) - ((I/16)*(I + Sqrt[3])^(2/3)*Log[ 
1 - I*Sqrt[3] - x^2])/3^(5/6) + ((I/6)*Log[1 - I*Sqrt[3] - x^2])/(3*(I + S 
qrt[3]))^(1/3) - Log[1 + I*Sqrt[3] - x^2]/(4*3^(5/6)*(-I + Sqrt[3])^(1/3)) 
 + ((I/16)*(-I + Sqrt[3])^(2/3)*Log[1 + I*Sqrt[3] - x^2])/3^(5/6) - ((I/6) 
*Log[1 + I*Sqrt[3] - x^2])/(3*(-I + Sqrt[3]))^(1/3) + (3^(1/6)*Log[3^(1/6) 
*x^(2/3) - (-I + Sqrt[3])^(1/3)*(-1 + x^2)^(1/3)])/(4*(-I + Sqrt[3])^(1/3) 
) - (I/16)*3^(1/6)*(-I + Sqrt[3])^(2/3)*Log[3^(1/6)*x^(2/3) - (-I + Sqrt[3 
])^(1/3)*(-1 + x^2)^(1/3)] + ((I/2)*Log[3^(1/6)*x^(2/3) - (-I + Sqrt[3])^( 
1/3)*(-1 + x^2)^(1/3)])/(3*(-I + Sqrt[3]))^(1/3) + (3^(1/6)*Log[3^(1/6)...
 

3.18.79.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.18.79.4 Maple [N/A] (verified)

Time = 42.73 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.69

method result size
pseudoelliptic \(\frac {\left (24 x^{2}-6\right ) \left (x^{3}-x \right )^{\frac {1}{3}}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (4 \textit {\_Z}^{6}-6 \textit {\_Z}^{3}+3\right )}{\sum }\frac {\left (4 \textit {\_R}^{3}-9\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{3}-x \right )^{\frac {1}{3}}}{x}\right )}{\textit {\_R}^{2} \left (4 \textit {\_R}^{3}-3\right )}\right ) x^{3}}{8 x^{3}}\) \(83\)
trager \(\text {Expression too large to display}\) \(2117\)
risch \(\text {Expression too large to display}\) \(3327\)

input
int((x^3-x)^(1/3)*(x^4-10*x^2+8)/x^4/(x^4-2*x^2+4),x,method=_RETURNVERBOSE 
)
 
output
1/8*((24*x^2-6)*(x^3-x)^(1/3)+sum((4*_R^3-9)*ln((-_R*x+(x^3-x)^(1/3))/x)/_ 
R^2/(4*_R^3-3),_R=RootOf(4*_Z^6-6*_Z^3+3))*x^3)/x^3
 
3.18.79.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=\text {Exception raised: TypeError} \]

input
integrate((x^3-x)^(1/3)*(x^4-10*x^2+8)/x^4/(x^4-2*x^2+4),x, algorithm="fri 
cas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (trace 0)
 
3.18.79.6 Sympy [N/A]

Not integrable

Time = 2.89 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.30 \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=\int \frac {\sqrt [3]{x \left (x - 1\right ) \left (x + 1\right )} \left (x^{4} - 10 x^{2} + 8\right )}{x^{4} \left (x^{4} - 2 x^{2} + 4\right )}\, dx \]

input
integrate((x**3-x)**(1/3)*(x**4-10*x**2+8)/x**4/(x**4-2*x**2+4),x)
 
output
Integral((x*(x - 1)*(x + 1))**(1/3)*(x**4 - 10*x**2 + 8)/(x**4*(x**4 - 2*x 
**2 + 4)), x)
 
3.18.79.7 Maxima [N/A]

Not integrable

Time = 0.33 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.31 \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=\int { \frac {{\left (x^{4} - 10 \, x^{2} + 8\right )} {\left (x^{3} - x\right )}^{\frac {1}{3}}}{{\left (x^{4} - 2 \, x^{2} + 4\right )} x^{4}} \,d x } \]

input
integrate((x^3-x)^(1/3)*(x^4-10*x^2+8)/x^4/(x^4-2*x^2+4),x, algorithm="max 
ima")
 
output
integrate((x^4 - 10*x^2 + 8)*(x^3 - x)^(1/3)/((x^4 - 2*x^2 + 4)*x^4), x)
 
3.18.79.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((x^3-x)^(1/3)*(x^4-10*x^2+8)/x^4/(x^4-2*x^2+4),x, algorithm="gia 
c")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:Invalid _EXT in replace_ext Error: Bad Argument Value(3 
072*(-(1/sageVARx)^2+1)^(1/3)*(-(1/sageVARx)^2+1)+9216*(-(1/sageVARx)^2+1) 
^(1/3))/4096
 
3.18.79.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.31 \[ \int \frac {\sqrt [3]{-x+x^3} \left (8-10 x^2+x^4\right )}{x^4 \left (4-2 x^2+x^4\right )} \, dx=\int \frac {{\left (x^3-x\right )}^{1/3}\,\left (x^4-10\,x^2+8\right )}{x^4\,\left (x^4-2\,x^2+4\right )} \,d x \]

input
int(((x^3 - x)^(1/3)*(x^4 - 10*x^2 + 8))/(x^4*(x^4 - 2*x^2 + 4)),x)
 
output
int(((x^3 - x)^(1/3)*(x^4 - 10*x^2 + 8))/(x^4*(x^4 - 2*x^2 + 4)), x)