3.19.16 \(\int \frac {1+x^6}{\sqrt {x+x^2+x^3} (1-x^6)} \, dx\) [1816]

3.19.16.1 Optimal result
3.19.16.2 Mathematica [A] (verified)
3.19.16.3 Rubi [C] (warning: unable to verify)
3.19.16.4 Maple [A] (verified)
3.19.16.5 Fricas [A] (verification not implemented)
3.19.16.6 Sympy [F]
3.19.16.7 Maxima [F]
3.19.16.8 Giac [F]
3.19.16.9 Mupad [B] (verification not implemented)

3.19.16.1 Optimal result

Integrand size = 27, antiderivative size = 123 \[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=\frac {2 \sqrt {x+x^2+x^3}}{3 \left (1+x+x^2\right )}+\frac {1}{3} \arctan \left (\frac {\sqrt {x+x^2+x^3}}{1+x+x^2}\right )+\frac {1}{3} \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {x+x^2+x^3}}{1+x+x^2}\right )+\frac {\text {arctanh}\left (\frac {\sqrt {3} \sqrt {x+x^2+x^3}}{1+x+x^2}\right )}{3 \sqrt {3}} \]

output
2*(x^3+x^2+x)^(1/2)/(3*x^2+3*x+3)+1/3*arctan((x^3+x^2+x)^(1/2)/(x^2+x+1))+ 
1/3*2^(1/2)*arctanh(2^(1/2)*(x^3+x^2+x)^(1/2)/(x^2+x+1))+1/9*arctanh(3^(1/ 
2)*(x^3+x^2+x)^(1/2)/(x^2+x+1))*3^(1/2)
 
3.19.16.2 Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.10 \[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=\frac {\sqrt {x} \left (6 \sqrt {x}+3 \sqrt {1+x+x^2} \arctan \left (\frac {\sqrt {x}}{\sqrt {1+x+x^2}}\right )+3 \sqrt {2} \sqrt {1+x+x^2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {1+x+x^2}}\right )+\sqrt {3} \sqrt {1+x+x^2} \text {arctanh}\left (\frac {\sqrt {3} \sqrt {x}}{\sqrt {1+x+x^2}}\right )\right )}{9 \sqrt {x \left (1+x+x^2\right )}} \]

input
Integrate[(1 + x^6)/(Sqrt[x + x^2 + x^3]*(1 - x^6)),x]
 
output
(Sqrt[x]*(6*Sqrt[x] + 3*Sqrt[1 + x + x^2]*ArcTan[Sqrt[x]/Sqrt[1 + x + x^2] 
] + 3*Sqrt[2]*Sqrt[1 + x + x^2]*ArcTanh[(Sqrt[2]*Sqrt[x])/Sqrt[1 + x + x^2 
]] + Sqrt[3]*Sqrt[1 + x + x^2]*ArcTanh[(Sqrt[3]*Sqrt[x])/Sqrt[1 + x + x^2] 
]))/(9*Sqrt[x*(1 + x + x^2)])
 
3.19.16.3 Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 3.95 (sec) , antiderivative size = 887, normalized size of antiderivative = 7.21, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2467, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6+1}{\sqrt {x^3+x^2+x} \left (1-x^6\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^2+x+1} \int \frac {x^6+1}{\sqrt {x} \sqrt {x^2+x+1} \left (1-x^6\right )}dx}{\sqrt {x^3+x^2+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2+x+1} \int \frac {x^6+1}{\sqrt {x^2+x+1} \left (1-x^6\right )}d\sqrt {x}}{\sqrt {x^3+x^2+x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2+x+1} \int \left (\frac {2}{\sqrt {x^2+x+1} \left (1-x^6\right )}-\frac {1}{\sqrt {x^2+x+1}}\right )d\sqrt {x}}{\sqrt {x^3+x^2+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \sqrt {x} \sqrt {x^2+x+1} \left (\frac {\sqrt [3]{-1} \sqrt {x} \left (\sqrt [3]{-1} x+1\right )}{3 \left (1+\sqrt [3]{-1}\right ) \sqrt {x^2+x+1}}+\frac {1}{6} \arctan \left (\frac {\sqrt {x}}{\sqrt {x^2+x+1}}\right )-\frac {i \arctan \left (\frac {-2 \sqrt [3]{-1} \left (2+\sqrt [3]{-1}\right ) x-3 i \sqrt {3}+1}{4 \sqrt {2} \sqrt {x^2+x+1}}\right )}{12 \sqrt {2}}+\frac {i \arctan \left (\frac {2 (-1)^{2/3} \left (2-(-1)^{2/3}\right ) x+3 i \sqrt {3}+1}{4 \sqrt {2} \sqrt {x^2+x+1}}\right )}{12 \sqrt {2}}+\frac {\sqrt [6]{-1} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x^2+x+1}}\right )}{2 \sqrt {6} \left (1+\sqrt [3]{-1}\right )}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {x}}{\sqrt {x^2+x+1}}\right )}{6 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt {3} \sqrt {x}}{\sqrt {x^2+x+1}}\right )}{6 \sqrt {3}}+\frac {\sqrt [6]{-1} \text {arctanh}\left (\frac {\left (1+2 \sqrt [3]{-1}\right ) x+\sqrt [3]{-1}+2}{2 \sqrt {1+i \sqrt {3}} \sqrt {x^2+x+1}}\right )}{12 \sqrt {1+i \sqrt {3}}}-\frac {(-1)^{5/6} \text {arctanh}\left (\frac {\left (1-2 (-1)^{2/3}\right ) x-(-1)^{2/3}+2}{2 \sqrt {1-i \sqrt {3}} \sqrt {x^2+x+1}}\right )}{12 \sqrt {1-i \sqrt {3}}}+\frac {\sqrt [6]{-1} (x+1) \sqrt {\frac {x^2+x+1}{(x+1)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {x}\right ),\frac {1}{4}\right )}{6 \left (3 i+\sqrt {3}\right ) \sqrt {x^2+x+1}}+\frac {\sqrt [3]{-1} (x+1) \sqrt {\frac {x^2+x+1}{(x+1)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {x}\right ),\frac {1}{4}\right )}{6 \left (1+\sqrt [3]{-1}\right ) \sqrt {x^2+x+1}}+\frac {(x+1) \sqrt {\frac {x^2+x+1}{(x+1)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {x}\right ),\frac {1}{4}\right )}{12 \left (1+\sqrt [3]{-1}\right ) \sqrt {x^2+x+1}}-\frac {(x+1) \sqrt {\frac {x^2+x+1}{(x+1)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {x}\right ),\frac {1}{4}\right )}{3 \sqrt {x^2+x+1}}-\frac {(-1)^{5/6} \left (1-(-1)^{2/3} x\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt [6]{-1} \sqrt {x}\right ),1+\sqrt [3]{-1}\right )}{3 \left (1+\sqrt [3]{-1}\right ) \sqrt {\frac {1-(-1)^{2/3} x}{\sqrt [3]{-1} x+1}} \sqrt {x^2+x+1}}+\frac {\sqrt [6]{-1} \left (1-(-1)^{2/3} x\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt [6]{-1} \sqrt {x}\right ),1+\sqrt [3]{-1}\right )}{3 \left (1+\sqrt [3]{-1}\right ) \sqrt {\frac {1-(-1)^{2/3} x}{\sqrt [3]{-1} x+1}} \sqrt {x^2+x+1}}+\frac {\sqrt {x} \left (1-(-1)^{2/3} x\right )}{3 \left (1+\sqrt [3]{-1}\right ) \sqrt {x^2+x+1}}\right )}{\sqrt {x^3+x^2+x}}\)

input
Int[(1 + x^6)/(Sqrt[x + x^2 + x^3]*(1 - x^6)),x]
 
output
(2*Sqrt[x]*Sqrt[1 + x + x^2]*(((-1)^(1/3)*Sqrt[x]*(1 + (-1)^(1/3)*x))/(3*( 
1 + (-1)^(1/3))*Sqrt[1 + x + x^2]) + (Sqrt[x]*(1 - (-1)^(2/3)*x))/(3*(1 + 
(-1)^(1/3))*Sqrt[1 + x + x^2]) + ArcTan[Sqrt[x]/Sqrt[1 + x + x^2]]/6 - ((I 
/12)*ArcTan[(1 - (3*I)*Sqrt[3] - 2*(-1)^(1/3)*(2 + (-1)^(1/3))*x)/(4*Sqrt[ 
2]*Sqrt[1 + x + x^2])])/Sqrt[2] + ((I/12)*ArcTan[(1 + (3*I)*Sqrt[3] + 2*(- 
1)^(2/3)*(2 - (-1)^(2/3))*x)/(4*Sqrt[2]*Sqrt[1 + x + x^2])])/Sqrt[2] + Arc 
Tanh[(Sqrt[2]*Sqrt[x])/Sqrt[1 + x + x^2]]/(6*Sqrt[2]) + ((-1)^(1/6)*ArcTan 
h[(Sqrt[2]*Sqrt[x])/Sqrt[1 + x + x^2]])/(2*Sqrt[6]*(1 + (-1)^(1/3))) + Arc 
Tanh[(Sqrt[3]*Sqrt[x])/Sqrt[1 + x + x^2]]/(6*Sqrt[3]) + ((-1)^(1/6)*ArcTan 
h[(2 + (-1)^(1/3) + (1 + 2*(-1)^(1/3))*x)/(2*Sqrt[1 + I*Sqrt[3]]*Sqrt[1 + 
x + x^2])])/(12*Sqrt[1 + I*Sqrt[3]]) - ((-1)^(5/6)*ArcTanh[(2 - (-1)^(2/3) 
 + (1 - 2*(-1)^(2/3))*x)/(2*Sqrt[1 - I*Sqrt[3]]*Sqrt[1 + x + x^2])])/(12*S 
qrt[1 - I*Sqrt[3]]) - ((1 + x)*Sqrt[(1 + x + x^2)/(1 + x)^2]*EllipticF[2*A 
rcTan[Sqrt[x]], 1/4])/(3*Sqrt[1 + x + x^2]) + ((1 + x)*Sqrt[(1 + x + x^2)/ 
(1 + x)^2]*EllipticF[2*ArcTan[Sqrt[x]], 1/4])/(12*(1 + (-1)^(1/3))*Sqrt[1 
+ x + x^2]) + ((-1)^(1/3)*(1 + x)*Sqrt[(1 + x + x^2)/(1 + x)^2]*EllipticF[ 
2*ArcTan[Sqrt[x]], 1/4])/(6*(1 + (-1)^(1/3))*Sqrt[1 + x + x^2]) + ((-1)^(1 
/6)*(1 + x)*Sqrt[(1 + x + x^2)/(1 + x)^2]*EllipticF[2*ArcTan[Sqrt[x]], 1/4 
])/(6*(3*I + Sqrt[3])*Sqrt[1 + x + x^2]) + ((-1)^(1/6)*(1 - (-1)^(2/3)*x)* 
EllipticF[ArcTan[(-1)^(1/6)*Sqrt[x]], 1 + (-1)^(1/3)])/(3*(1 + (-1)^(1/...
 

3.19.16.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.19.16.4 Maple [A] (verified)

Time = 2.18 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.65

method result size
risch \(\frac {2 x}{3 \sqrt {x \left (x^{2}+x +1\right )}}+\frac {\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (x^{2}+x +1\right )}\, \sqrt {3}}{3 x}\right )}{9}+\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (x^{2}+x +1\right )}\, \sqrt {2}}{2 x}\right )}{3}-\frac {\arctan \left (\frac {\sqrt {x \left (x^{2}+x +1\right )}}{x}\right )}{3}\) \(80\)
default \(-\frac {-\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (x^{2}+x +1\right )}\, \sqrt {2}}{2 x}\right ) \sqrt {x \left (x^{2}+x +1\right )}-\frac {\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (x^{2}+x +1\right )}\, \sqrt {3}}{3 x}\right ) \sqrt {x \left (x^{2}+x +1\right )}}{3}+\arctan \left (\frac {\sqrt {x \left (x^{2}+x +1\right )}}{x}\right ) \sqrt {x \left (x^{2}+x +1\right )}-2 x}{3 \sqrt {x \left (x^{2}+x +1\right )}}\) \(111\)
pseudoelliptic \(\frac {\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (x^{2}+x +1\right )}\, \sqrt {3}}{3 x}\right ) \sqrt {x \left (x^{2}+x +1\right )}+3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (x^{2}+x +1\right )}\, \sqrt {2}}{2 x}\right ) \sqrt {x \left (x^{2}+x +1\right )}-3 \arctan \left (\frac {\sqrt {x \left (x^{2}+x +1\right )}}{x}\right ) \sqrt {x \left (x^{2}+x +1\right )}+6 x}{9 \sqrt {x \left (x^{2}+x +1\right )}}\) \(111\)
trager \(\frac {2 \sqrt {x^{3}+x^{2}+x}}{3 \left (x^{2}+x +1\right )}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{2}+2 \sqrt {x^{3}+x^{2}+x}+\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{\left (1+x \right )^{2}}\right )}{6}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x^{2}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right )+6 \sqrt {x^{3}+x^{2}+x}}{\left (-1+x \right )^{2}}\right )}{18}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x^{2}-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +4 \sqrt {x^{3}+x^{2}+x}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )}{x^{2}-x +1}\right )}{6}\) \(180\)
elliptic \(\text {Expression too large to display}\) \(1330\)

input
int((x^6+1)/(x^3+x^2+x)^(1/2)/(-x^6+1),x,method=_RETURNVERBOSE)
 
output
2/3*x/(x*(x^2+x+1))^(1/2)+1/9*3^(1/2)*arctanh(1/3*(x*(x^2+x+1))^(1/2)/x*3^ 
(1/2))+1/3*2^(1/2)*arctanh(1/2*(x*(x^2+x+1))^(1/2)/x*2^(1/2))-1/3*arctan(( 
x*(x^2+x+1))^(1/2)/x)
 
3.19.16.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.59 \[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=\frac {3 \, \sqrt {2} {\left (x^{2} + x + 1\right )} \log \left (\frac {x^{4} + 14 \, x^{3} + 4 \, \sqrt {2} \sqrt {x^{3} + x^{2} + x} {\left (x^{2} + 3 \, x + 1\right )} + 19 \, x^{2} + 14 \, x + 1}{x^{4} - 2 \, x^{3} + 3 \, x^{2} - 2 \, x + 1}\right ) + \sqrt {3} {\left (x^{2} + x + 1\right )} \log \left (\frac {x^{4} + 20 \, x^{3} + 4 \, \sqrt {3} \sqrt {x^{3} + x^{2} + x} {\left (x^{2} + 4 \, x + 1\right )} + 30 \, x^{2} + 20 \, x + 1}{x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1}\right ) - 6 \, {\left (x^{2} + x + 1\right )} \arctan \left (\frac {x^{2} + 1}{2 \, \sqrt {x^{3} + x^{2} + x}}\right ) + 24 \, \sqrt {x^{3} + x^{2} + x}}{36 \, {\left (x^{2} + x + 1\right )}} \]

input
integrate((x^6+1)/(x^3+x^2+x)^(1/2)/(-x^6+1),x, algorithm="fricas")
 
output
1/36*(3*sqrt(2)*(x^2 + x + 1)*log((x^4 + 14*x^3 + 4*sqrt(2)*sqrt(x^3 + x^2 
 + x)*(x^2 + 3*x + 1) + 19*x^2 + 14*x + 1)/(x^4 - 2*x^3 + 3*x^2 - 2*x + 1) 
) + sqrt(3)*(x^2 + x + 1)*log((x^4 + 20*x^3 + 4*sqrt(3)*sqrt(x^3 + x^2 + x 
)*(x^2 + 4*x + 1) + 30*x^2 + 20*x + 1)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1)) - 
6*(x^2 + x + 1)*arctan(1/2*(x^2 + 1)/sqrt(x^3 + x^2 + x)) + 24*sqrt(x^3 + 
x^2 + x))/(x^2 + x + 1)
 
3.19.16.6 Sympy [F]

\[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=- \int \frac {x^{6}}{x^{6} \sqrt {x^{3} + x^{2} + x} - \sqrt {x^{3} + x^{2} + x}}\, dx - \int \frac {1}{x^{6} \sqrt {x^{3} + x^{2} + x} - \sqrt {x^{3} + x^{2} + x}}\, dx \]

input
integrate((x**6+1)/(x**3+x**2+x)**(1/2)/(-x**6+1),x)
 
output
-Integral(x**6/(x**6*sqrt(x**3 + x**2 + x) - sqrt(x**3 + x**2 + x)), x) - 
Integral(1/(x**6*sqrt(x**3 + x**2 + x) - sqrt(x**3 + x**2 + x)), x)
 
3.19.16.7 Maxima [F]

\[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=\int { -\frac {x^{6} + 1}{{\left (x^{6} - 1\right )} \sqrt {x^{3} + x^{2} + x}} \,d x } \]

input
integrate((x^6+1)/(x^3+x^2+x)^(1/2)/(-x^6+1),x, algorithm="maxima")
 
output
-integrate((x^6 + 1)/((x^6 - 1)*sqrt(x^3 + x^2 + x)), x)
 
3.19.16.8 Giac [F]

\[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=\int { -\frac {x^{6} + 1}{{\left (x^{6} - 1\right )} \sqrt {x^{3} + x^{2} + x}} \,d x } \]

input
integrate((x^6+1)/(x^3+x^2+x)^(1/2)/(-x^6+1),x, algorithm="giac")
 
output
integrate(-(x^6 + 1)/((x^6 - 1)*sqrt(x^3 + x^2 + x)), x)
 
3.19.16.9 Mupad [B] (verification not implemented)

Time = 5.50 (sec) , antiderivative size = 1195, normalized size of antiderivative = 9.72 \[ \int \frac {1+x^6}{\sqrt {x+x^2+x^3} \left (1-x^6\right )} \, dx=\text {Too large to display} \]

input
int(-(x^6 + 1)/((x^6 - 1)*(x + x^2 + x^3)^(1/2)),x)
 
output
(2*((3^(1/2)*1i)/6 - 1/6)*(x/((3^(1/2)*1i)/2 - 1/2))^(1/2)*(-(x - (3^(1/2) 
*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 1/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/(( 
3^(1/2)*1i)/2 + 1/2))^(1/2)*ellipticPi(-1, asin((x/((3^(1/2)*1i)/2 - 1/2)) 
^(1/2)), -((3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 + 1/2)))/(x^2 + x^3 - x*( 
(3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2) - (2*((3^(1/2)*1i)/2 - 
 1/2)*(x/((3^(1/2)*1i)/2 - 1/2))^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1 
/2)*1i)/2 - 1/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 1/2) 
)^(1/2)*ellipticF(asin((x/((3^(1/2)*1i)/2 - 1/2))^(1/2)), -((3^(1/2)*1i)/2 
 - 1/2)/((3^(1/2)*1i)/2 + 1/2)))/(x^2 + x^3 - x*((3^(1/2)*1i)/2 - 1/2)*((3 
^(1/2)*1i)/2 + 1/2))^(1/2) - (2*((3^(1/2)*1i)/6 - 1/6)*(x/((3^(1/2)*1i)/2 
- 1/2))^(1/2)*((ellipticE(asin((x/((3^(1/2)*1i)/2 - 1/2))^(1/2)), -((3^(1/ 
2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 + 1/2)) - ((x/((3^(1/2)*1i)/2 - 1/2))^(1/2 
)*(x/((3^(1/2)*1i)/2 + 1/2) + 1)^(1/2))/(1 - x/((3^(1/2)*1i)/2 - 1/2))^(1/ 
2))/(((3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 + 1/2) + 1) - ellipticF(asin(( 
x/((3^(1/2)*1i)/2 - 1/2))^(1/2)), -((3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 
+ 1/2)))*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 1/2))^(1/2)*((x + 
(3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 1/2))^(1/2))/(x^2 + x^3 - x*((3^(1 
/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2) + (2*((3^(1/2)*1i)/2 - 1/2) 
*(x/((3^(1/2)*1i)/2 - 1/2))^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1 
i)/2 - 1/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 1/2))^...