3.19.61 \(\int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx\) [1861]

3.19.61.1 Optimal result
3.19.61.2 Mathematica [A] (verified)
3.19.61.3 Rubi [A] (warning: unable to verify)
3.19.61.4 Maple [A] (verified)
3.19.61.5 Fricas [C] (verification not implemented)
3.19.61.6 Sympy [C] (verification not implemented)
3.19.61.7 Maxima [A] (verification not implemented)
3.19.61.8 Giac [A] (verification not implemented)
3.19.61.9 Mupad [B] (verification not implemented)

3.19.61.1 Optimal result

Integrand size = 17, antiderivative size = 128 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{-b+a x^4}}{-\sqrt {b}+\sqrt {-b+a x^4}}\right )}{2 \sqrt {2} \sqrt [4]{b}}-\frac {\text {arctanh}\left (\frac {\frac {\sqrt [4]{b}}{\sqrt {2}}+\frac {\sqrt {-b+a x^4}}{\sqrt {2} \sqrt [4]{b}}}{\sqrt [4]{-b+a x^4}}\right )}{2 \sqrt {2} \sqrt [4]{b}} \]

output
-1/4*arctan(2^(1/2)*b^(1/4)*(a*x^4-b)^(1/4)/(-b^(1/2)+(a*x^4-b)^(1/2)))*2^ 
(1/2)/b^(1/4)-1/4*arctanh((1/2*b^(1/4)*2^(1/2)+1/2*(a*x^4-b)^(1/2)*2^(1/2) 
/b^(1/4))/(a*x^4-b)^(1/4))*2^(1/2)/b^(1/4)
 
3.19.61.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.85 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=\frac {\arctan \left (\frac {-\sqrt {b}+\sqrt {-b+a x^4}}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{-b+a x^4}}\right )-\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{-b+a x^4}}{\sqrt {b}+\sqrt {-b+a x^4}}\right )}{2 \sqrt {2} \sqrt [4]{b}} \]

input
Integrate[1/(x*(-b + a*x^4)^(1/4)),x]
 
output
(ArcTan[(-Sqrt[b] + Sqrt[-b + a*x^4])/(Sqrt[2]*b^(1/4)*(-b + a*x^4)^(1/4)) 
] - ArcTanh[(Sqrt[2]*b^(1/4)*(-b + a*x^4)^(1/4))/(Sqrt[b] + Sqrt[-b + a*x^ 
4])])/(2*Sqrt[2]*b^(1/4))
 
3.19.61.3 Rubi [A] (warning: unable to verify)

Time = 0.37 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.45, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.647, Rules used = {798, 73, 27, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt [4]{a x^4-b}} \, dx\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{4} \int \frac {1}{x^4 \sqrt [4]{a x^4-b}}dx^4\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\int \frac {a x^8}{x^{16}+b}d\sqrt [4]{a x^4-b}}{a}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {x^8}{b+x^{16}}d\sqrt [4]{a x^4-b}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {1}{2} \int \frac {x^8+\sqrt {b}}{x^{16}+b}d\sqrt [4]{a x^4-b}-\frac {1}{2} \int \frac {\sqrt {b}-x^8}{x^{16}+b}d\sqrt [4]{a x^4-b}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {1}{x^8+\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}+\frac {1}{2} \int \frac {1}{x^8+\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}\right )-\frac {1}{2} \int \frac {\sqrt {b}-x^8}{x^{16}+b}d\sqrt [4]{a x^4-b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {1}{-x^8-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b}}-\frac {\int \frac {1}{-x^8-1}d\left (\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b}}\right )-\frac {1}{2} \int \frac {\sqrt {b}-x^8}{x^{16}+b}d\sqrt [4]{a x^4-b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b}}\right )-\frac {1}{2} \int \frac {\sqrt {b}-x^8}{x^{16}+b}d\sqrt [4]{a x^4-b}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a x^4-b}}{x^8+\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}}{2 \sqrt {2} \sqrt [4]{b}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{b}+\sqrt {2} \sqrt [4]{a x^4-b}\right )}{x^8+\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}}{2 \sqrt {2} \sqrt [4]{b}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a x^4-b}}{x^8+\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}}{2 \sqrt {2} \sqrt [4]{b}}-\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{b}+\sqrt {2} \sqrt [4]{a x^4-b}\right )}{x^8+\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}}{2 \sqrt {2} \sqrt [4]{b}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a x^4-b}}{x^8+\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}}{2 \sqrt {2} \sqrt [4]{b}}-\frac {\int \frac {\sqrt [4]{b}+\sqrt {2} \sqrt [4]{a x^4-b}}{x^8+\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}}d\sqrt [4]{a x^4-b}}{2 \sqrt [4]{b}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b}}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a x^4-b}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}+\sqrt {b}+x^8\right )}{2 \sqrt {2} \sqrt [4]{b}}-\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{a x^4-b}+\sqrt {b}+x^8\right )}{2 \sqrt {2} \sqrt [4]{b}}\right )\)

input
Int[1/(x*(-b + a*x^4)^(1/4)),x]
 
output
(-(ArcTan[1 - (Sqrt[2]*(-b + a*x^4)^(1/4))/b^(1/4)]/(Sqrt[2]*b^(1/4))) + A 
rcTan[1 + (Sqrt[2]*(-b + a*x^4)^(1/4))/b^(1/4)]/(Sqrt[2]*b^(1/4)))/2 + (Lo 
g[Sqrt[b] + x^8 - Sqrt[2]*b^(1/4)*(-b + a*x^4)^(1/4)]/(2*Sqrt[2]*b^(1/4)) 
- Log[Sqrt[b] + x^8 + Sqrt[2]*b^(1/4)*(-b + a*x^4)^(1/4)]/(2*Sqrt[2]*b^(1/ 
4)))/2
 

3.19.61.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.19.61.4 Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.05

method result size
pseudoelliptic \(\frac {\sqrt {2}\, \left (\ln \left (\frac {\sqrt {a \,x^{4}-b}-b^{\frac {1}{4}} \left (a \,x^{4}-b \right )^{\frac {1}{4}} \sqrt {2}+\sqrt {b}}{\sqrt {a \,x^{4}-b}+b^{\frac {1}{4}} \left (a \,x^{4}-b \right )^{\frac {1}{4}} \sqrt {2}+\sqrt {b}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \left (a \,x^{4}-b \right )^{\frac {1}{4}}+b^{\frac {1}{4}}}{b^{\frac {1}{4}}}\right )-2 \arctan \left (\frac {-\sqrt {2}\, \left (a \,x^{4}-b \right )^{\frac {1}{4}}+b^{\frac {1}{4}}}{b^{\frac {1}{4}}}\right )\right )}{8 b^{\frac {1}{4}}}\) \(134\)

input
int(1/x/(a*x^4-b)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/8/b^(1/4)*2^(1/2)*(ln(((a*x^4-b)^(1/2)-b^(1/4)*(a*x^4-b)^(1/4)*2^(1/2)+b 
^(1/2))/((a*x^4-b)^(1/2)+b^(1/4)*(a*x^4-b)^(1/4)*2^(1/2)+b^(1/2)))+2*arcta 
n((2^(1/2)*(a*x^4-b)^(1/4)+b^(1/4))/b^(1/4))-2*arctan((-2^(1/2)*(a*x^4-b)^ 
(1/4)+b^(1/4))/b^(1/4)))
 
3.19.61.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=\frac {1}{4} \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left (b \left (-\frac {1}{b}\right )^{\frac {3}{4}} + {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right ) - \frac {1}{4} i \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left (i \, b \left (-\frac {1}{b}\right )^{\frac {3}{4}} + {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right ) + \frac {1}{4} i \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left (-i \, b \left (-\frac {1}{b}\right )^{\frac {3}{4}} + {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right ) - \frac {1}{4} \, \left (-\frac {1}{b}\right )^{\frac {1}{4}} \log \left (-b \left (-\frac {1}{b}\right )^{\frac {3}{4}} + {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right ) \]

input
integrate(1/x/(a*x^4-b)^(1/4),x, algorithm="fricas")
 
output
1/4*(-1/b)^(1/4)*log(b*(-1/b)^(3/4) + (a*x^4 - b)^(1/4)) - 1/4*I*(-1/b)^(1 
/4)*log(I*b*(-1/b)^(3/4) + (a*x^4 - b)^(1/4)) + 1/4*I*(-1/b)^(1/4)*log(-I* 
b*(-1/b)^(3/4) + (a*x^4 - b)^(1/4)) - 1/4*(-1/b)^(1/4)*log(-b*(-1/b)^(3/4) 
 + (a*x^4 - b)^(1/4))
 
3.19.61.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.50 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.30 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=- \frac {\Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b e^{2 i \pi }}{a x^{4}}} \right )}}{4 \sqrt [4]{a} x \Gamma \left (\frac {5}{4}\right )} \]

input
integrate(1/x/(a*x**4-b)**(1/4),x)
 
output
-gamma(1/4)*hyper((1/4, 1/4), (5/4,), b*exp_polar(2*I*pi)/(a*x**4))/(4*a** 
(1/4)*x*gamma(5/4))
 
3.19.61.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.27 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} + 2 \, {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right )}}{2 \, b^{\frac {1}{4}}}\right )}{4 \, b^{\frac {1}{4}}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} - 2 \, {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right )}}{2 \, b^{\frac {1}{4}}}\right )}{4 \, b^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (\sqrt {2} {\left (a x^{4} - b\right )}^{\frac {1}{4}} b^{\frac {1}{4}} + \sqrt {a x^{4} - b} + \sqrt {b}\right )}{8 \, b^{\frac {1}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} {\left (a x^{4} - b\right )}^{\frac {1}{4}} b^{\frac {1}{4}} + \sqrt {a x^{4} - b} + \sqrt {b}\right )}{8 \, b^{\frac {1}{4}}} \]

input
integrate(1/x/(a*x^4-b)^(1/4),x, algorithm="maxima")
 
output
1/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4) + 2*(a*x^4 - b)^(1/4))/b^( 
1/4))/b^(1/4) + 1/4*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4) - 2*(a*x^ 
4 - b)^(1/4))/b^(1/4))/b^(1/4) - 1/8*sqrt(2)*log(sqrt(2)*(a*x^4 - b)^(1/4) 
*b^(1/4) + sqrt(a*x^4 - b) + sqrt(b))/b^(1/4) + 1/8*sqrt(2)*log(-sqrt(2)*( 
a*x^4 - b)^(1/4)*b^(1/4) + sqrt(a*x^4 - b) + sqrt(b))/b^(1/4)
 
3.19.61.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.27 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} + 2 \, {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right )}}{2 \, b^{\frac {1}{4}}}\right )}{4 \, b^{\frac {1}{4}}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} - 2 \, {\left (a x^{4} - b\right )}^{\frac {1}{4}}\right )}}{2 \, b^{\frac {1}{4}}}\right )}{4 \, b^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (\sqrt {2} {\left (a x^{4} - b\right )}^{\frac {1}{4}} b^{\frac {1}{4}} + \sqrt {a x^{4} - b} + \sqrt {b}\right )}{8 \, b^{\frac {1}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} {\left (a x^{4} - b\right )}^{\frac {1}{4}} b^{\frac {1}{4}} + \sqrt {a x^{4} - b} + \sqrt {b}\right )}{8 \, b^{\frac {1}{4}}} \]

input
integrate(1/x/(a*x^4-b)^(1/4),x, algorithm="giac")
 
output
1/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4) + 2*(a*x^4 - b)^(1/4))/b^( 
1/4))/b^(1/4) + 1/4*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4) - 2*(a*x^ 
4 - b)^(1/4))/b^(1/4))/b^(1/4) - 1/8*sqrt(2)*log(sqrt(2)*(a*x^4 - b)^(1/4) 
*b^(1/4) + sqrt(a*x^4 - b) + sqrt(b))/b^(1/4) + 1/8*sqrt(2)*log(-sqrt(2)*( 
a*x^4 - b)^(1/4)*b^(1/4) + sqrt(a*x^4 - b) + sqrt(b))/b^(1/4)
 
3.19.61.9 Mupad [B] (verification not implemented)

Time = 5.81 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.36 \[ \int \frac {1}{x \sqrt [4]{-b+a x^4}} \, dx=\frac {\mathrm {atan}\left (\frac {{\left (a\,x^4-b\right )}^{1/4}}{{\left (-b\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {{\left (a\,x^4-b\right )}^{1/4}}{{\left (-b\right )}^{1/4}}\right )}{2\,{\left (-b\right )}^{1/4}} \]

input
int(1/(x*(a*x^4 - b)^(1/4)),x)
 
output
(atan((a*x^4 - b)^(1/4)/(-b)^(1/4)) - atanh((a*x^4 - b)^(1/4)/(-b)^(1/4))) 
/(2*(-b)^(1/4))