3.19.91 \(\int \frac {1+x^4}{\sqrt {-x-x^2+x^3} (-1+x^4)} \, dx\) [1891]

3.19.91.1 Optimal result
3.19.91.2 Mathematica [A] (verified)
3.19.91.3 Rubi [C] (warning: unable to verify)
3.19.91.4 Maple [B] (verified)
3.19.91.5 Fricas [B] (verification not implemented)
3.19.91.6 Sympy [F]
3.19.91.7 Maxima [F]
3.19.91.8 Giac [F]
3.19.91.9 Mupad [B] (verification not implemented)

3.19.91.1 Optimal result

Integrand size = 29, antiderivative size = 131 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=-\arctan \left (\frac {\sqrt {-x-x^2+x^3}}{-1-x+x^2}\right )-\frac {1}{2} \sqrt {\frac {1}{5}+\frac {2 i}{5}} \arctan \left (\frac {\sqrt {1-2 i} \sqrt {-x-x^2+x^3}}{-1-x+x^2}\right )-\frac {1}{2} \sqrt {\frac {1}{5}-\frac {2 i}{5}} \arctan \left (\frac {\sqrt {1+2 i} \sqrt {-x-x^2+x^3}}{-1-x+x^2}\right ) \]

output
-arctan((x^3-x^2-x)^(1/2)/(x^2-x-1))-1/10*(5+10*I)^(1/2)*arctan((1-2*I)^(1 
/2)*(x^3-x^2-x)^(1/2)/(x^2-x-1))-1/10*(5-10*I)^(1/2)*arctan((1+2*I)^(1/2)* 
(x^3-x^2-x)^(1/2)/(x^2-x-1))
 
3.19.91.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.03 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=-\frac {\sqrt {x} \sqrt {-1-x+x^2} \left (2 \sqrt {5} \arctan \left (\frac {\sqrt {x}}{\sqrt {-1-x+x^2}}\right )+\sqrt {1+2 i} \arctan \left (\frac {\sqrt {1-2 i} \sqrt {x}}{\sqrt {-1-x+x^2}}\right )+\sqrt {1-2 i} \arctan \left (\frac {\sqrt {1+2 i} \sqrt {x}}{\sqrt {-1-x+x^2}}\right )\right )}{2 \sqrt {5} \sqrt {x \left (-1-x+x^2\right )}} \]

input
Integrate[(1 + x^4)/(Sqrt[-x - x^2 + x^3]*(-1 + x^4)),x]
 
output
-1/2*(Sqrt[x]*Sqrt[-1 - x + x^2]*(2*Sqrt[5]*ArcTan[Sqrt[x]/Sqrt[-1 - x + x 
^2]] + Sqrt[1 + 2*I]*ArcTan[(Sqrt[1 - 2*I]*Sqrt[x])/Sqrt[-1 - x + x^2]] + 
Sqrt[1 - 2*I]*ArcTan[(Sqrt[1 + 2*I]*Sqrt[x])/Sqrt[-1 - x + x^2]]))/(Sqrt[5 
]*Sqrt[x*(-1 - x + x^2)])
 
3.19.91.3 Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.90 (sec) , antiderivative size = 980, normalized size of antiderivative = 7.48, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4+1}{\sqrt {x^3-x^2-x} \left (x^4-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^2-x-1} \int -\frac {x^4+1}{\sqrt {x} \sqrt {x^2-x-1} \left (1-x^4\right )}dx}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^2-x-1} \int \frac {x^4+1}{\sqrt {x} \sqrt {x^2-x-1} \left (1-x^4\right )}dx}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-x-1} \int \frac {x^4+1}{\sqrt {x^2-x-1} \left (1-x^4\right )}d\sqrt {x}}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-x-1} \int \left (\frac {2}{\sqrt {x^2-x-1} \left (1-x^4\right )}-\frac {1}{\sqrt {x^2-x-1}}\right )d\sqrt {x}}{\sqrt {x^3-x^2-x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^2-x-1} \left (\frac {\arctan \left (\frac {\sqrt {1-2 i} \sqrt {x}}{\sqrt {x^2-x-1}}\right )}{4 \sqrt {1-2 i}}+\frac {\arctan \left (\frac {\sqrt {1+2 i} \sqrt {x}}{\sqrt {x^2-x-1}}\right )}{4 \sqrt {1+2 i}}-\frac {\left (1+\sqrt {5}\right ) \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {2} \left (3+\sqrt {5}\right ) \sqrt {x^2-x-1}}-\frac {\left (1+\sqrt {5}\right ) \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{2 \sqrt {2} \left (1-\sqrt {5}\right ) \sqrt {x^2-x-1}}+\frac {\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2} \sqrt {\frac {\left (1+\sqrt {5}\right ) x+2}{\left (1-\sqrt {5}\right ) x+2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{2 \sqrt [4]{5} \left (3+\sqrt {5}\right ) \sqrt {\frac {1}{\left (1-\sqrt {5}\right ) x+2}} \sqrt {x^2-x-1}}+\frac {\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2} \sqrt {\frac {\left (1+\sqrt {5}\right ) x+2}{\left (1-\sqrt {5}\right ) x+2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{2 \sqrt [4]{5} \left (1-\sqrt {5}\right ) \sqrt {\frac {1}{\left (1-\sqrt {5}\right ) x+2}} \sqrt {x^2-x-1}}-\frac {\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2} \sqrt {\frac {\left (1+\sqrt {5}\right ) x+2}{\left (1-\sqrt {5}\right ) x+2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{5} \sqrt {x}}{\sqrt {-\left (\left (1-\sqrt {5}\right ) x\right )-2}}\right ),\frac {1}{10} \left (5-\sqrt {5}\right )\right )}{4 \sqrt [4]{5} \sqrt {\frac {1}{\left (1-\sqrt {5}\right ) x+2}} \sqrt {x^2-x-1}}+\frac {\left (2+\sqrt {5}\right ) \sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} \left (-1-\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{\sqrt {2} \left (3+\sqrt {5}\right ) \sqrt {x^2-x-1}}-\frac {\sqrt {2 x+\sqrt {5}-1} \sqrt {1-\frac {2 x}{1+\sqrt {5}}} \operatorname {EllipticPi}\left (\frac {1}{2} \left (1+\sqrt {5}\right ),\arcsin \left (\sqrt {\frac {2}{1+\sqrt {5}}} \sqrt {x}\right ),\frac {1}{2} \left (-3-\sqrt {5}\right )\right )}{\sqrt {2} \left (1-\sqrt {5}\right ) \sqrt {x^2-x-1}}\right )}{\sqrt {x^3-x^2-x}}\)

input
Int[(1 + x^4)/(Sqrt[-x - x^2 + x^3]*(-1 + x^4)),x]
 
output
(-2*Sqrt[x]*Sqrt[-1 - x + x^2]*(ArcTan[(Sqrt[1 - 2*I]*Sqrt[x])/Sqrt[-1 - x 
 + x^2]]/(4*Sqrt[1 - 2*I]) + ArcTan[(Sqrt[1 + 2*I]*Sqrt[x])/Sqrt[-1 - x + 
x^2]]/(4*Sqrt[1 + 2*I]) - ((1 + Sqrt[5])*Sqrt[-1 + Sqrt[5] + 2*x]*Sqrt[1 - 
 (2*x)/(1 + Sqrt[5])]*EllipticF[ArcSin[Sqrt[2/(1 + Sqrt[5])]*Sqrt[x]], (-3 
 - Sqrt[5])/2])/(2*Sqrt[2]*(1 - Sqrt[5])*Sqrt[-1 - x + x^2]) - ((1 + Sqrt[ 
5])*Sqrt[-1 + Sqrt[5] + 2*x]*Sqrt[1 - (2*x)/(1 + Sqrt[5])]*EllipticF[ArcSi 
n[Sqrt[2/(1 + Sqrt[5])]*Sqrt[x]], (-3 - Sqrt[5])/2])/(2*Sqrt[2]*(3 + Sqrt[ 
5])*Sqrt[-1 - x + x^2]) - (Sqrt[-2 - (1 - Sqrt[5])*x]*Sqrt[(2 + (1 + Sqrt[ 
5])*x)/(2 + (1 - Sqrt[5])*x)]*EllipticF[ArcSin[(Sqrt[2]*5^(1/4)*Sqrt[x])/S 
qrt[-2 - (1 - Sqrt[5])*x]], (5 - Sqrt[5])/10])/(4*5^(1/4)*Sqrt[(2 + (1 - S 
qrt[5])*x)^(-1)]*Sqrt[-1 - x + x^2]) + (Sqrt[-2 - (1 - Sqrt[5])*x]*Sqrt[(2 
 + (1 + Sqrt[5])*x)/(2 + (1 - Sqrt[5])*x)]*EllipticF[ArcSin[(Sqrt[2]*5^(1/ 
4)*Sqrt[x])/Sqrt[-2 - (1 - Sqrt[5])*x]], (5 - Sqrt[5])/10])/(2*5^(1/4)*(1 
- Sqrt[5])*Sqrt[(2 + (1 - Sqrt[5])*x)^(-1)]*Sqrt[-1 - x + x^2]) + (Sqrt[-2 
 - (1 - Sqrt[5])*x]*Sqrt[(2 + (1 + Sqrt[5])*x)/(2 + (1 - Sqrt[5])*x)]*Elli 
pticF[ArcSin[(Sqrt[2]*5^(1/4)*Sqrt[x])/Sqrt[-2 - (1 - Sqrt[5])*x]], (5 - S 
qrt[5])/10])/(2*5^(1/4)*(3 + Sqrt[5])*Sqrt[(2 + (1 - Sqrt[5])*x)^(-1)]*Sqr 
t[-1 - x + x^2]) + ((2 + Sqrt[5])*Sqrt[-1 + Sqrt[5] + 2*x]*Sqrt[1 - (2*x)/ 
(1 + Sqrt[5])]*EllipticPi[(-1 - Sqrt[5])/2, ArcSin[Sqrt[2/(1 + Sqrt[5])]*S 
qrt[x]], (-3 - Sqrt[5])/2])/(Sqrt[2]*(3 + Sqrt[5])*Sqrt[-1 - x + x^2]) ...
 

3.19.91.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.19.91.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(224\) vs. \(2(105)=210\).

Time = 6.07 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.72

method result size
default \(-\frac {-\sqrt {5}\, \ln \left (\frac {-\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\sqrt {5}\, \ln \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\left (-5-\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x +2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )-10 \arctan \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}}{x}\right ) \sqrt {2+2 \sqrt {5}}+\left (5+\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x -2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )}{10 \sqrt {2+2 \sqrt {5}}}\) \(225\)
pseudoelliptic \(-\frac {-\sqrt {5}\, \ln \left (\frac {-\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\sqrt {5}\, \ln \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}\, \sqrt {-2+2 \sqrt {5}}+x \sqrt {5}+x^{2}-x -1}{x}\right )+\left (-5-\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x +2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )-10 \arctan \left (\frac {\sqrt {x \left (x^{2}-x -1\right )}}{x}\right ) \sqrt {2+2 \sqrt {5}}+\left (5+\sqrt {5}\right ) \arctan \left (\frac {\sqrt {-2+2 \sqrt {5}}\, x -2 \sqrt {x \left (x^{2}-x -1\right )}}{x \sqrt {2+2 \sqrt {5}}}\right )}{10 \sqrt {2+2 \sqrt {5}}}\) \(225\)
trager \(\text {Expression too large to display}\) \(915\)
elliptic \(\text {Expression too large to display}\) \(1685\)

input
int((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x,method=_RETURNVERBOSE)
 
output
-1/10/(2+2*5^(1/2))^(1/2)*(-5^(1/2)*ln((-(x*(x^2-x-1))^(1/2)*(-2+2*5^(1/2) 
)^(1/2)+x*5^(1/2)+x^2-x-1)/x)+5^(1/2)*ln(((x*(x^2-x-1))^(1/2)*(-2+2*5^(1/2 
))^(1/2)+x*5^(1/2)+x^2-x-1)/x)+(-5-5^(1/2))*arctan(((-2+2*5^(1/2))^(1/2)*x 
+2*(x*(x^2-x-1))^(1/2))/x/(2+2*5^(1/2))^(1/2))-10*arctan((x*(x^2-x-1))^(1/ 
2)/x)*(2+2*5^(1/2))^(1/2)+(5+5^(1/2))*arctan(((-2+2*5^(1/2))^(1/2)*x-2*(x* 
(x^2-x-1))^(1/2))/x/(2+2*5^(1/2))^(1/2)))
 
3.19.91.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 324 vs. \(2 (97) = 194\).

Time = 0.34 (sec) , antiderivative size = 324, normalized size of antiderivative = 2.47 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=-\frac {1}{40} \, \sqrt {5} \sqrt {-2 i - 1} \log \left (\frac {5 \, x^{4} + \left (20 i - 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {-2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (-\left (2 i - 1\right ) \, x^{2} + \left (2 i + 4\right ) \, x + 2 i - 1\right )} - \left (20 i + 30\right ) \, x^{2} - \left (20 i - 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{40} \, \sqrt {5} \sqrt {-2 i - 1} \log \left (\frac {5 \, x^{4} + \left (20 i - 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {-2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (\left (2 i - 1\right ) \, x^{2} - \left (2 i + 4\right ) \, x - 2 i + 1\right )} - \left (20 i + 30\right ) \, x^{2} - \left (20 i - 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) - \frac {1}{40} \, \sqrt {5} \sqrt {2 i - 1} \log \left (\frac {5 \, x^{4} - \left (20 i + 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (\left (2 i + 1\right ) \, x^{2} - \left (2 i - 4\right ) \, x - 2 i - 1\right )} + \left (20 i - 30\right ) \, x^{2} + \left (20 i + 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{40} \, \sqrt {5} \sqrt {2 i - 1} \log \left (\frac {5 \, x^{4} - \left (20 i + 10\right ) \, x^{3} - 2 \, \sqrt {5} \sqrt {2 i - 1} \sqrt {x^{3} - x^{2} - x} {\left (-\left (2 i + 1\right ) \, x^{2} + \left (2 i - 4\right ) \, x + 2 i + 1\right )} + \left (20 i - 30\right ) \, x^{2} + \left (20 i + 10\right ) \, x + 5}{x^{4} + 2 \, x^{2} + 1}\right ) + \frac {1}{2} \, \arctan \left (\frac {x^{2} - 2 \, x - 1}{2 \, \sqrt {x^{3} - x^{2} - x}}\right ) \]

input
integrate((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x, algorithm="fricas")
 
output
-1/40*sqrt(5)*sqrt(-2*I - 1)*log((5*x^4 + (20*I - 10)*x^3 - 2*sqrt(5)*sqrt 
(-2*I - 1)*sqrt(x^3 - x^2 - x)*(-(2*I - 1)*x^2 + (2*I + 4)*x + 2*I - 1) - 
(20*I + 30)*x^2 - (20*I - 10)*x + 5)/(x^4 + 2*x^2 + 1)) + 1/40*sqrt(5)*sqr 
t(-2*I - 1)*log((5*x^4 + (20*I - 10)*x^3 - 2*sqrt(5)*sqrt(-2*I - 1)*sqrt(x 
^3 - x^2 - x)*((2*I - 1)*x^2 - (2*I + 4)*x - 2*I + 1) - (20*I + 30)*x^2 - 
(20*I - 10)*x + 5)/(x^4 + 2*x^2 + 1)) - 1/40*sqrt(5)*sqrt(2*I - 1)*log((5* 
x^4 - (20*I + 10)*x^3 - 2*sqrt(5)*sqrt(2*I - 1)*sqrt(x^3 - x^2 - x)*((2*I 
+ 1)*x^2 - (2*I - 4)*x - 2*I - 1) + (20*I - 30)*x^2 + (20*I + 10)*x + 5)/( 
x^4 + 2*x^2 + 1)) + 1/40*sqrt(5)*sqrt(2*I - 1)*log((5*x^4 - (20*I + 10)*x^ 
3 - 2*sqrt(5)*sqrt(2*I - 1)*sqrt(x^3 - x^2 - x)*(-(2*I + 1)*x^2 + (2*I - 4 
)*x + 2*I + 1) + (20*I - 30)*x^2 + (20*I + 10)*x + 5)/(x^4 + 2*x^2 + 1)) + 
 1/2*arctan(1/2*(x^2 - 2*x - 1)/sqrt(x^3 - x^2 - x))
 
3.19.91.6 Sympy [F]

\[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\int \frac {x^{4} + 1}{\sqrt {x \left (x^{2} - x - 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}\, dx \]

input
integrate((x**4+1)/(x**3-x**2-x)**(1/2)/(x**4-1),x)
 
output
Integral((x**4 + 1)/(sqrt(x*(x**2 - x - 1))*(x - 1)*(x + 1)*(x**2 + 1)), x 
)
 
3.19.91.7 Maxima [F]

\[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\int { \frac {x^{4} + 1}{{\left (x^{4} - 1\right )} \sqrt {x^{3} - x^{2} - x}} \,d x } \]

input
integrate((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x, algorithm="maxima")
 
output
integrate((x^4 + 1)/((x^4 - 1)*sqrt(x^3 - x^2 - x)), x)
 
3.19.91.8 Giac [F]

\[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\int { \frac {x^{4} + 1}{{\left (x^{4} - 1\right )} \sqrt {x^{3} - x^{2} - x}} \,d x } \]

input
integrate((x^4+1)/(x^3-x^2-x)^(1/2)/(x^4-1),x, algorithm="giac")
 
output
integrate((x^4 + 1)/((x^4 - 1)*sqrt(x^3 - x^2 - x)), x)
 
3.19.91.9 Mupad [B] (verification not implemented)

Time = 5.37 (sec) , antiderivative size = 658, normalized size of antiderivative = 5.02 \[ \int \frac {1+x^4}{\sqrt {-x-x^2+x^3} \left (-1+x^4\right )} \, dx=\frac {2\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (-\frac {\sqrt {5}}{2}-\frac {1}{2};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (\frac {\sqrt {5}}{2}+\frac {1}{2};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (-\frac {\sqrt {5}\,1{}\mathrm {i}}{2}-\frac {1}{2}{}\mathrm {i};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}}-\frac {\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\sqrt {\frac {x+\frac {\sqrt {5}}{2}-\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}}\,\sqrt {\frac {\frac {\sqrt {5}}{2}-x+\frac {1}{2}}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\,\Pi \left (\frac {\sqrt {5}\,1{}\mathrm {i}}{2}+\frac {1}{2}{}\mathrm {i};\mathrm {asin}\left (\sqrt {\frac {x}{\frac {\sqrt {5}}{2}+\frac {1}{2}}}\right )\middle |-\frac {\frac {\sqrt {5}}{2}+\frac {1}{2}}{\frac {\sqrt {5}}{2}-\frac {1}{2}}\right )}{\sqrt {x^3-x^2-\left (\frac {\sqrt {5}}{2}-\frac {1}{2}\right )\,\left (\frac {\sqrt {5}}{2}+\frac {1}{2}\right )\,x}} \]

input
int((x^4 + 1)/((x^4 - 1)*(x^3 - x^2 - x)^(1/2)),x)
 
output
(2*(5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/(5 
^(1/2)/2 - 1/2))^(1/2)*ellipticF(asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1 
/2)/2 + 1/2)/(5^(1/2)/2 - 1/2))*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^ 
(1/2))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2) - ((5^(1/ 
2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 
- 1/2))^(1/2)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*ellipticPi(- 
 5^(1/2)/2 - 1/2, asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5 
^(1/2)/2 - 1/2)))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2))^(1/2 
) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/2 - 1/2)/ 
(5^(1/2)/2 - 1/2))^(1/2)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2))^(1/2)*e 
llipticPi(5^(1/2)/2 + 1/2, asin((x/(5^(1/2)/2 + 1/2))^(1/2)), -(5^(1/2)/2 
+ 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1 
/2))^(1/2) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/2)*((x + 5^(1/2)/ 
2 - 1/2)/(5^(1/2)/2 - 1/2))^(1/2)*((5^(1/2)/2 - x + 1/2)/(5^(1/2)/2 + 1/2) 
)^(1/2)*ellipticPi(- (5^(1/2)*1i)/2 - 1i/2, asin((x/(5^(1/2)/2 + 1/2))^(1/ 
2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 - x*(5^(1/2)/2 - 1/ 
2)*(5^(1/2)/2 + 1/2))^(1/2) - ((5^(1/2)/2 + 1/2)*(x/(5^(1/2)/2 + 1/2))^(1/ 
2)*((x + 5^(1/2)/2 - 1/2)/(5^(1/2)/2 - 1/2))^(1/2)*((5^(1/2)/2 - x + 1/2)/ 
(5^(1/2)/2 + 1/2))^(1/2)*ellipticPi((5^(1/2)*1i)/2 + 1i/2, asin((x/(5^(1/2 
)/2 + 1/2))^(1/2)), -(5^(1/2)/2 + 1/2)/(5^(1/2)/2 - 1/2)))/(x^3 - x^2 -...