3.20.52 \(\int \frac {-2+x^4}{\sqrt [4]{1+x^4} (-1-x^4+2 x^8)} \, dx\) [1952]

3.20.52.1 Optimal result
3.20.52.2 Mathematica [A] (verified)
3.20.52.3 Rubi [A] (verified)
3.20.52.4 Maple [A] (verified)
3.20.52.5 Fricas [C] (verification not implemented)
3.20.52.6 Sympy [F]
3.20.52.7 Maxima [F]
3.20.52.8 Giac [F]
3.20.52.9 Mupad [F(-1)]

3.20.52.1 Optimal result

Integrand size = 29, antiderivative size = 137 \[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )}{6 \sqrt [4]{2}}+\frac {5 \arctan \left (\frac {\sqrt {2} x \sqrt [4]{1+x^4}}{-x^2+\sqrt {1+x^4}}\right )}{6 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )}{6 \sqrt [4]{2}}+\frac {5 \text {arctanh}\left (\frac {\sqrt {2} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )}{6 \sqrt {2}} \]

output
1/12*arctan(2^(1/4)*x/(x^4+1)^(1/4))*2^(3/4)+5/12*arctan(2^(1/2)*x*(x^4+1) 
^(1/4)/(-x^2+(x^4+1)^(1/2)))*2^(1/2)+1/12*arctanh(2^(1/4)*x/(x^4+1)^(1/4)) 
*2^(3/4)+5/12*arctanh(2^(1/2)*x*(x^4+1)^(1/4)/(x^2+(x^4+1)^(1/2)))*2^(1/2)
 
3.20.52.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.92 \[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=\frac {\sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )+5 \arctan \left (\frac {\sqrt {2} x \sqrt [4]{1+x^4}}{-x^2+\sqrt {1+x^4}}\right )+\sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )+5 \text {arctanh}\left (\frac {\sqrt {2} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )}{6 \sqrt {2}} \]

input
Integrate[(-2 + x^4)/((1 + x^4)^(1/4)*(-1 - x^4 + 2*x^8)),x]
 
output
(2^(1/4)*ArcTan[(2^(1/4)*x)/(1 + x^4)^(1/4)] + 5*ArcTan[(Sqrt[2]*x*(1 + x^ 
4)^(1/4))/(-x^2 + Sqrt[1 + x^4])] + 2^(1/4)*ArcTanh[(2^(1/4)*x)/(1 + x^4)^ 
(1/4)] + 5*ArcTanh[(Sqrt[2]*x*(1 + x^4)^(1/4))/(x^2 + Sqrt[1 + x^4])])/(6* 
Sqrt[2])
 
3.20.52.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.41, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4-2}{\sqrt [4]{x^4+1} \left (2 x^8-x^4-1\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {10}{3 \sqrt [4]{x^4+1} \left (4 x^4+2\right )}-\frac {4}{3 \sqrt [4]{x^4+1} \left (4 x^4-4\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{6 \sqrt [4]{2}}-\frac {5 \arctan \left (1-\frac {\sqrt {2} x}{\sqrt [4]{x^4+1}}\right )}{6 \sqrt {2}}+\frac {5 \arctan \left (\frac {\sqrt {2} x}{\sqrt [4]{x^4+1}}+1\right )}{6 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{6 \sqrt [4]{2}}-\frac {5 \log \left (-\frac {\sqrt {2} x}{\sqrt [4]{x^4+1}}+\frac {x^2}{\sqrt {x^4+1}}+1\right )}{12 \sqrt {2}}+\frac {5 \log \left (\frac {\sqrt {2} x}{\sqrt [4]{x^4+1}}+\frac {x^2}{\sqrt {x^4+1}}+1\right )}{12 \sqrt {2}}\)

input
Int[(-2 + x^4)/((1 + x^4)^(1/4)*(-1 - x^4 + 2*x^8)),x]
 
output
ArcTan[(2^(1/4)*x)/(1 + x^4)^(1/4)]/(6*2^(1/4)) - (5*ArcTan[1 - (Sqrt[2]*x 
)/(1 + x^4)^(1/4)])/(6*Sqrt[2]) + (5*ArcTan[1 + (Sqrt[2]*x)/(1 + x^4)^(1/4 
)])/(6*Sqrt[2]) + ArcTanh[(2^(1/4)*x)/(1 + x^4)^(1/4)]/(6*2^(1/4)) - (5*Lo 
g[1 + x^2/Sqrt[1 + x^4] - (Sqrt[2]*x)/(1 + x^4)^(1/4)])/(12*Sqrt[2]) + (5* 
Log[1 + x^2/Sqrt[1 + x^4] + (Sqrt[2]*x)/(1 + x^4)^(1/4)])/(12*Sqrt[2])
 

3.20.52.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.20.52.4 Maple [A] (verified)

Time = 6.16 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.22

method result size
pseudoelliptic \(-\frac {\arctan \left (\frac {2^{\frac {3}{4}} \left (x^{4}+1\right )^{\frac {1}{4}}}{2 x}\right ) 2^{\frac {3}{4}}}{12}+\frac {\ln \left (\frac {-2^{\frac {1}{4}} x -\left (x^{4}+1\right )^{\frac {1}{4}}}{2^{\frac {1}{4}} x -\left (x^{4}+1\right )^{\frac {1}{4}}}\right ) 2^{\frac {3}{4}}}{24}-\frac {5 \ln \left (\frac {-\left (x^{4}+1\right )^{\frac {1}{4}} x \sqrt {2}+x^{2}+\sqrt {x^{4}+1}}{\left (x^{4}+1\right )^{\frac {1}{4}} x \sqrt {2}+x^{2}+\sqrt {x^{4}+1}}\right ) \sqrt {2}}{24}-\frac {5 \arctan \left (\frac {\left (x^{4}+1\right )^{\frac {1}{4}} \sqrt {2}+x}{x}\right ) \sqrt {2}}{12}-\frac {5 \arctan \left (\frac {\left (x^{4}+1\right )^{\frac {1}{4}} \sqrt {2}-x}{x}\right ) \sqrt {2}}{12}\) \(167\)
trager \(\text {Expression too large to display}\) \(642\)

input
int((x^4-2)/(x^4+1)^(1/4)/(2*x^8-x^4-1),x,method=_RETURNVERBOSE)
 
output
-1/12*arctan(1/2*2^(3/4)/x*(x^4+1)^(1/4))*2^(3/4)+1/24*ln((-2^(1/4)*x-(x^4 
+1)^(1/4))/(2^(1/4)*x-(x^4+1)^(1/4)))*2^(3/4)-5/24*ln((-(x^4+1)^(1/4)*x*2^ 
(1/2)+x^2+(x^4+1)^(1/2))/((x^4+1)^(1/4)*x*2^(1/2)+x^2+(x^4+1)^(1/2)))*2^(1 
/2)-5/12*arctan(((x^4+1)^(1/4)*2^(1/2)+x)/x)*2^(1/2)-5/12*arctan(((x^4+1)^ 
(1/4)*2^(1/2)-x)/x)*2^(1/2)
 
3.20.52.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 6.18 (sec) , antiderivative size = 502, normalized size of antiderivative = 3.66 \[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=\frac {1}{48} \cdot 2^{\frac {3}{4}} \log \left (\frac {4 \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} + 4 \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + 1} x^{2} + 2^{\frac {3}{4}} {\left (3 \, x^{4} + 1\right )} + 4 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} x}{x^{4} - 1}\right ) + \frac {1}{48} i \cdot 2^{\frac {3}{4}} \log \left (-\frac {4 \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} + 4 i \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + 1} x^{2} - 2^{\frac {3}{4}} {\left (3 i \, x^{4} + i\right )} - 4 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} x}{x^{4} - 1}\right ) - \frac {1}{48} i \cdot 2^{\frac {3}{4}} \log \left (-\frac {4 \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} - 4 i \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + 1} x^{2} - 2^{\frac {3}{4}} {\left (-3 i \, x^{4} - i\right )} - 4 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} x}{x^{4} - 1}\right ) - \frac {1}{48} \cdot 2^{\frac {3}{4}} \log \left (\frac {4 \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} - 4 \cdot 2^{\frac {1}{4}} \sqrt {x^{4} + 1} x^{2} - 2^{\frac {3}{4}} {\left (3 \, x^{4} + 1\right )} + 4 \, {\left (x^{4} + 1\right )}^{\frac {3}{4}} x}{x^{4} - 1}\right ) - \left (\frac {5}{48} i + \frac {5}{48}\right ) \, \sqrt {2} \log \left (\frac {\left (i + 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} - 2 i \, \sqrt {x^{4} + 1} x^{2} + \left (i - 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {3}{4}} x + 1}{2 \, x^{4} + 1}\right ) + \left (\frac {5}{48} i - \frac {5}{48}\right ) \, \sqrt {2} \log \left (\frac {-\left (i - 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} + 2 i \, \sqrt {x^{4} + 1} x^{2} - \left (i + 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {3}{4}} x + 1}{2 \, x^{4} + 1}\right ) - \left (\frac {5}{48} i - \frac {5}{48}\right ) \, \sqrt {2} \log \left (\frac {\left (i - 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} + 2 i \, \sqrt {x^{4} + 1} x^{2} + \left (i + 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {3}{4}} x + 1}{2 \, x^{4} + 1}\right ) + \left (\frac {5}{48} i + \frac {5}{48}\right ) \, \sqrt {2} \log \left (\frac {-\left (i + 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {1}{4}} x^{3} - 2 i \, \sqrt {x^{4} + 1} x^{2} - \left (i - 1\right ) \, \sqrt {2} {\left (x^{4} + 1\right )}^{\frac {3}{4}} x + 1}{2 \, x^{4} + 1}\right ) \]

input
integrate((x^4-2)/(x^4+1)^(1/4)/(2*x^8-x^4-1),x, algorithm="fricas")
 
output
1/48*2^(3/4)*log((4*sqrt(2)*(x^4 + 1)^(1/4)*x^3 + 4*2^(1/4)*sqrt(x^4 + 1)* 
x^2 + 2^(3/4)*(3*x^4 + 1) + 4*(x^4 + 1)^(3/4)*x)/(x^4 - 1)) + 1/48*I*2^(3/ 
4)*log(-(4*sqrt(2)*(x^4 + 1)^(1/4)*x^3 + 4*I*2^(1/4)*sqrt(x^4 + 1)*x^2 - 2 
^(3/4)*(3*I*x^4 + I) - 4*(x^4 + 1)^(3/4)*x)/(x^4 - 1)) - 1/48*I*2^(3/4)*lo 
g(-(4*sqrt(2)*(x^4 + 1)^(1/4)*x^3 - 4*I*2^(1/4)*sqrt(x^4 + 1)*x^2 - 2^(3/4 
)*(-3*I*x^4 - I) - 4*(x^4 + 1)^(3/4)*x)/(x^4 - 1)) - 1/48*2^(3/4)*log((4*s 
qrt(2)*(x^4 + 1)^(1/4)*x^3 - 4*2^(1/4)*sqrt(x^4 + 1)*x^2 - 2^(3/4)*(3*x^4 
+ 1) + 4*(x^4 + 1)^(3/4)*x)/(x^4 - 1)) - (5/48*I + 5/48)*sqrt(2)*log(((I + 
 1)*sqrt(2)*(x^4 + 1)^(1/4)*x^3 - 2*I*sqrt(x^4 + 1)*x^2 + (I - 1)*sqrt(2)* 
(x^4 + 1)^(3/4)*x + 1)/(2*x^4 + 1)) + (5/48*I - 5/48)*sqrt(2)*log((-(I - 1 
)*sqrt(2)*(x^4 + 1)^(1/4)*x^3 + 2*I*sqrt(x^4 + 1)*x^2 - (I + 1)*sqrt(2)*(x 
^4 + 1)^(3/4)*x + 1)/(2*x^4 + 1)) - (5/48*I - 5/48)*sqrt(2)*log(((I - 1)*s 
qrt(2)*(x^4 + 1)^(1/4)*x^3 + 2*I*sqrt(x^4 + 1)*x^2 + (I + 1)*sqrt(2)*(x^4 
+ 1)^(3/4)*x + 1)/(2*x^4 + 1)) + (5/48*I + 5/48)*sqrt(2)*log((-(I + 1)*sqr 
t(2)*(x^4 + 1)^(1/4)*x^3 - 2*I*sqrt(x^4 + 1)*x^2 - (I - 1)*sqrt(2)*(x^4 + 
1)^(3/4)*x + 1)/(2*x^4 + 1))
 
3.20.52.6 Sympy [F]

\[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=\int \frac {x^{4} - 2}{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \sqrt [4]{x^{4} + 1} \cdot \left (2 x^{4} + 1\right )}\, dx \]

input
integrate((x**4-2)/(x**4+1)**(1/4)/(2*x**8-x**4-1),x)
 
output
Integral((x**4 - 2)/((x - 1)*(x + 1)*(x**2 + 1)*(x**4 + 1)**(1/4)*(2*x**4 
+ 1)), x)
 
3.20.52.7 Maxima [F]

\[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=\int { \frac {x^{4} - 2}{{\left (2 \, x^{8} - x^{4} - 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((x^4-2)/(x^4+1)^(1/4)/(2*x^8-x^4-1),x, algorithm="maxima")
 
output
integrate((x^4 - 2)/((2*x^8 - x^4 - 1)*(x^4 + 1)^(1/4)), x)
 
3.20.52.8 Giac [F]

\[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=\int { \frac {x^{4} - 2}{{\left (2 \, x^{8} - x^{4} - 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((x^4-2)/(x^4+1)^(1/4)/(2*x^8-x^4-1),x, algorithm="giac")
 
output
integrate((x^4 - 2)/((2*x^8 - x^4 - 1)*(x^4 + 1)^(1/4)), x)
 
3.20.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-2+x^4}{\sqrt [4]{1+x^4} \left (-1-x^4+2 x^8\right )} \, dx=-\int \frac {x^4-2}{{\left (x^4+1\right )}^{1/4}\,\left (-2\,x^8+x^4+1\right )} \,d x \]

input
int(-(x^4 - 2)/((x^4 + 1)^(1/4)*(x^4 - 2*x^8 + 1)),x)
 
output
-int((x^4 - 2)/((x^4 + 1)^(1/4)*(x^4 - 2*x^8 + 1)), x)