3.20.71 \(\int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx\) [1971]

3.20.71.1 Optimal result
3.20.71.2 Mathematica [A] (verified)
3.20.71.3 Rubi [A] (warning: unable to verify)
3.20.71.4 Maple [A] (verified)
3.20.71.5 Fricas [A] (verification not implemented)
3.20.71.6 Sympy [F]
3.20.71.7 Maxima [F]
3.20.71.8 Giac [F]
3.20.71.9 Mupad [F(-1)]

3.20.71.1 Optimal result

Integrand size = 18, antiderivative size = 140 \[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=\frac {3}{2} \sqrt [3]{6+2 x+x^2}-\frac {1}{2} \sqrt {3} \sqrt [3]{5} \arctan \left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [3]{6+2 x+x^2}}{\sqrt {3} \sqrt [3]{5}}\right )+\frac {1}{2} \sqrt [3]{5} \log \left (-5+5^{2/3} \sqrt [3]{6+2 x+x^2}\right )-\frac {1}{4} \sqrt [3]{5} \log \left (5+5^{2/3} \sqrt [3]{6+2 x+x^2}+\sqrt [3]{5} \left (6+2 x+x^2\right )^{2/3}\right ) \]

output
3/2*(x^2+2*x+6)^(1/3)-1/2*3^(1/2)*5^(1/3)*arctan(1/3*3^(1/2)+2/15*(x^2+2*x 
+6)^(1/3)*3^(1/2)*5^(2/3))+1/2*5^(1/3)*ln(-5+5^(2/3)*(x^2+2*x+6)^(1/3))-1/ 
4*5^(1/3)*ln(5+5^(2/3)*(x^2+2*x+6)^(1/3)+5^(1/3)*(x^2+2*x+6)^(2/3))
 
3.20.71.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.97 \[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=\frac {1}{4} \left (6 \sqrt [3]{6+2 x+x^2}-2 \sqrt {3} \sqrt [3]{5} \arctan \left (\frac {5+2\ 5^{2/3} \sqrt [3]{6+2 x+x^2}}{5 \sqrt {3}}\right )+2 \sqrt [3]{5} \log \left (-5+5^{2/3} \sqrt [3]{6+2 x+x^2}\right )-\sqrt [3]{5} \log \left (5+5^{2/3} \sqrt [3]{6+2 x+x^2}+\sqrt [3]{5} \left (6+2 x+x^2\right )^{2/3}\right )\right ) \]

input
Integrate[(6 + 2*x + x^2)^(1/3)/(1 + x),x]
 
output
(6*(6 + 2*x + x^2)^(1/3) - 2*Sqrt[3]*5^(1/3)*ArcTan[(5 + 2*5^(2/3)*(6 + 2* 
x + x^2)^(1/3))/(5*Sqrt[3])] + 2*5^(1/3)*Log[-5 + 5^(2/3)*(6 + 2*x + x^2)^ 
(1/3)] - 5^(1/3)*Log[5 + 5^(2/3)*(6 + 2*x + x^2)^(1/3) + 5^(1/3)*(6 + 2*x 
+ x^2)^(2/3)])/4
 
3.20.71.3 Rubi [A] (warning: unable to verify)

Time = 0.23 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.62, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.389, Rules used = {1118, 243, 60, 69, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{x^2+2 x+6}}{x+1} \, dx\)

\(\Big \downarrow \) 1118

\(\displaystyle \int \frac {\sqrt [3]{(x+1)^2+5}}{x+1}d(x+1)\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {1}{2} \int \frac {\sqrt [3]{x+6}}{(x+1)^2}d(x+1)^2\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left (5 \int \frac {1}{(x+1)^2 (x+6)^{2/3}}d(x+1)^2+3 \sqrt [3]{x+6}\right )\)

\(\Big \downarrow \) 69

\(\displaystyle \frac {1}{2} \left (5 \left (-\frac {3 \int \frac {1}{-x+\sqrt [3]{5}-1}d\sqrt [3]{x+6}}{2\ 5^{2/3}}-\frac {3 \int \frac {1}{(x+1)^4+\sqrt [3]{5} \sqrt [3]{x+6}+5^{2/3}}d\sqrt [3]{x+6}}{2 \sqrt [3]{5}}-\frac {\log \left ((x+1)^2\right )}{2\ 5^{2/3}}\right )+3 \sqrt [3]{x+6}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{2} \left (5 \left (-\frac {3 \int \frac {1}{(x+1)^4+\sqrt [3]{5} \sqrt [3]{x+6}+5^{2/3}}d\sqrt [3]{x+6}}{2 \sqrt [3]{5}}+\frac {3 \log \left (-x+\sqrt [3]{5}-1\right )}{2\ 5^{2/3}}-\frac {\log \left ((x+1)^2\right )}{2\ 5^{2/3}}\right )+3 \sqrt [3]{x+6}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{2} \left (5 \left (\frac {3 \int \frac {1}{-(x+1)^4-3}d\left (\frac {2 \sqrt [3]{x+6}}{\sqrt [3]{5}}+1\right )}{5^{2/3}}+\frac {3 \log \left (-x+\sqrt [3]{5}-1\right )}{2\ 5^{2/3}}-\frac {\log \left ((x+1)^2\right )}{2\ 5^{2/3}}\right )+3 \sqrt [3]{x+6}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{2} \left (5 \left (-\frac {\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [3]{x+6}}{\sqrt [3]{5}}+1}{\sqrt {3}}\right )}{5^{2/3}}+\frac {3 \log \left (-x+\sqrt [3]{5}-1\right )}{2\ 5^{2/3}}-\frac {\log \left ((x+1)^2\right )}{2\ 5^{2/3}}\right )+3 \sqrt [3]{x+6}\right )\)

input
Int[(6 + 2*x + x^2)^(1/3)/(1 + x),x]
 
output
(3*(6 + x)^(1/3) + 5*(-((Sqrt[3]*ArcTan[(1 + (2*(6 + x)^(1/3))/5^(1/3))/Sq 
rt[3]])/5^(2/3)) + (3*Log[-1 + 5^(1/3) - x])/(2*5^(2/3)) - Log[(1 + x)^2]/ 
(2*5^(2/3))))/2
 

3.20.71.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 69
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2), 
 x] + (-Simp[3/(2*b*q)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] - Simp[3/(2*b*q^2)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1118
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[1/e   Subst[Int[x^m*(a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, 
d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[2*c*d - b*e, 0]
 
3.20.71.4 Maple [A] (verified)

Time = 13.96 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.74

method result size
pseudoelliptic \(\frac {3 \left (x^{2}+2 x +6\right )^{\frac {1}{3}}}{2}+\frac {5^{\frac {1}{3}} \ln \left (\left (x^{2}+2 x +6\right )^{\frac {1}{3}}-5^{\frac {1}{3}}\right )}{2}-\frac {5^{\frac {1}{3}} \ln \left (\left (x^{2}+2 x +6\right )^{\frac {2}{3}}+5^{\frac {1}{3}} \left (x^{2}+2 x +6\right )^{\frac {1}{3}}+5^{\frac {2}{3}}\right )}{4}-\frac {\sqrt {3}\, 5^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3}}{3}+\frac {2 \left (x^{2}+2 x +6\right )^{\frac {1}{3}} \sqrt {3}\, 5^{\frac {2}{3}}}{15}\right )}{2}\) \(103\)
trager \(\text {Expression too large to display}\) \(848\)
risch \(\text {Expression too large to display}\) \(2698\)

input
int((x^2+2*x+6)^(1/3)/(1+x),x,method=_RETURNVERBOSE)
 
output
3/2*(x^2+2*x+6)^(1/3)+1/2*5^(1/3)*ln((x^2+2*x+6)^(1/3)-5^(1/3))-1/4*5^(1/3 
)*ln((x^2+2*x+6)^(2/3)+5^(1/3)*(x^2+2*x+6)^(1/3)+5^(2/3))-1/2*3^(1/2)*5^(1 
/3)*arctan(1/3*3^(1/2)+2/15*(x^2+2*x+6)^(1/3)*3^(1/2)*5^(2/3))
 
3.20.71.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=-\frac {1}{2} \cdot 5^{\frac {1}{3}} \sqrt {3} \arctan \left (\frac {2}{15} \cdot 5^{\frac {2}{3}} \sqrt {3} {\left (x^{2} + 2 \, x + 6\right )}^{\frac {1}{3}} + \frac {1}{3} \, \sqrt {3}\right ) - \frac {1}{4} \cdot 5^{\frac {1}{3}} \log \left (5^{\frac {2}{3}} + 5^{\frac {1}{3}} {\left (x^{2} + 2 \, x + 6\right )}^{\frac {1}{3}} + {\left (x^{2} + 2 \, x + 6\right )}^{\frac {2}{3}}\right ) + \frac {1}{2} \cdot 5^{\frac {1}{3}} \log \left (-5^{\frac {1}{3}} + {\left (x^{2} + 2 \, x + 6\right )}^{\frac {1}{3}}\right ) + \frac {3}{2} \, {\left (x^{2} + 2 \, x + 6\right )}^{\frac {1}{3}} \]

input
integrate((x^2+2*x+6)^(1/3)/(1+x),x, algorithm="fricas")
 
output
-1/2*5^(1/3)*sqrt(3)*arctan(2/15*5^(2/3)*sqrt(3)*(x^2 + 2*x + 6)^(1/3) + 1 
/3*sqrt(3)) - 1/4*5^(1/3)*log(5^(2/3) + 5^(1/3)*(x^2 + 2*x + 6)^(1/3) + (x 
^2 + 2*x + 6)^(2/3)) + 1/2*5^(1/3)*log(-5^(1/3) + (x^2 + 2*x + 6)^(1/3)) + 
 3/2*(x^2 + 2*x + 6)^(1/3)
 
3.20.71.6 Sympy [F]

\[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=\int \frac {\sqrt [3]{x^{2} + 2 x + 6}}{x + 1}\, dx \]

input
integrate((x**2+2*x+6)**(1/3)/(1+x),x)
 
output
Integral((x**2 + 2*x + 6)**(1/3)/(x + 1), x)
 
3.20.71.7 Maxima [F]

\[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=\int { \frac {{\left (x^{2} + 2 \, x + 6\right )}^{\frac {1}{3}}}{x + 1} \,d x } \]

input
integrate((x^2+2*x+6)^(1/3)/(1+x),x, algorithm="maxima")
 
output
integrate((x^2 + 2*x + 6)^(1/3)/(x + 1), x)
 
3.20.71.8 Giac [F]

\[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=\int { \frac {{\left (x^{2} + 2 \, x + 6\right )}^{\frac {1}{3}}}{x + 1} \,d x } \]

input
integrate((x^2+2*x+6)^(1/3)/(1+x),x, algorithm="giac")
 
output
integrate((x^2 + 2*x + 6)^(1/3)/(x + 1), x)
 
3.20.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{6+2 x+x^2}}{1+x} \, dx=\int \frac {{\left (x^2+2\,x+6\right )}^{1/3}}{x+1} \,d x \]

input
int((2*x + x^2 + 6)^(1/3)/(x + 1),x)
 
output
int((2*x + x^2 + 6)^(1/3)/(x + 1), x)